Cho số phức \(z\) thỏa mãn \(|z+i|=1\). Biết rằng tập hợp điểm biểu diễn số phức \(w=z-2i\) là một đường tròn. Tâm của đường tròn đó là
| \(I(0;-1)\) | |
| \(I(0;-3)\) | |
| \(I(0;3)\) | |
| \(I(0;1)\) |
Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.
| $I(-3;-5)$, $R=\sqrt{5}$ | |
| $I(3;-5)$, $R=\sqrt{10}$ | |
| $I(-3;5)$, $R=\sqrt{10}$ | |
| $I(3;5)$, $R=10$ |
Tập hợp các số phức $z$ thỏa mãn $|z+1-2i|=3$ là đường tròn có tâm
| $I(-1;2)$ | |
| $I(-1;-2)$ | |
| $I(1;-2)$ | |
| $I(1;2)$ |
Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức $z$ thỏa mãn $\big|z+(2-3i)\big|=2$ là đường tròn $(\mathscr{C})$. Tìm tâm $I$ và bán kính $R$ của đường tròn $(\mathscr{C})$.
| $I(2;-3),\,R=\sqrt{2}$ | |
| $I(2;-3),\,R=4$ | |
| $I(-2;3),\,R=\sqrt{2}$ | |
| $I(-2;3),\,R=2$ |
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức $z$ thỏa mãn $|z|=\sqrt{7}$.
| Đường tròn tâm $O(0;0)$, bán kính $R=\dfrac{7}{2}$ | |
| Đường tròn tâm $O(0;0)$, bán kính $R=7$ | |
| Đường tròn tâm $O(0;0)$, bán kính $R=49$ | |
| Đường tròn tâm $O(0;0)$, bán kính $R=\sqrt{7}$ |
Cho số phức $z$ thỏa điều kiện $|z|=10$ và $w=(6+8i)\cdot\overline{z}+(1-2i)^2$. Tập hợp điểm biểu diễn cho số phức $w$ là đường tròn có tâm là
| $I(-3;-4)$ | |
| $I(3;4)$ | |
| $I(6;8)$ | |
| $I(1;-2)$ |
Với các số phức \(z\) thỏa mãn \(\left|z-2+i\right|=4\), tập hợp điểm biểu diễn các số phức \(z\) là một đường tròn. Tìm bán kính \(R\) của đường tròn đó.
| \(R=8\) | |
| \(R=16\) | |
| \(R=2\) | |
| \(R=4\) |
Trên mặt phẳng tọa độ, biết tập họp điểm biểu diễn các số phức $z$ thỏa mãn $|z+2i|=1$ là một đường tròn. Tâm của đường tròn đó có tọa độ là
| $(0;2)$ | |
| $(-2;0)$ | |
| $(0;-2)$ | |
| $(2;0)$ |
Trong mặt phẳng $Oxy$, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\left|z-(2-3i)\right|\leq2$.
| Một đường thẳng | |
| Một đường tròn | |
| Một hình tròn | |
| Một đường elip |
Cho số phức \(z\) thỏa mãn \(|z+2-\mathrm{i}|=3\). Tìm tập hợp các điểm trong mặt phẳng \(Oxy\) biểu diễn số phức \(w=1+\overline{z}\).
| Đường tròn tâm \(I(-2;1)\) bán kính \(R=3\) | |
| Đường tròn tâm \(I(2;-1)\) bán kính \(R=3\) | |
| Đường tròn tâm \(I(-1;-1)\) bán kính \(R=9\) | |
| Đường tròn tâm \(I(-1;-1)\) bán kính \(R=3\) |
Gọi $z_1,\,z_2$ là hai trong các số phức thỏa mãn $(z-6)\big(8+\overline{zi}\big)$ là số thực. Biết rằng $\left|z_1-z_2\right|=4$. Tìm giá trị nhỏ nhất $m$ của $\left|z_1+3z_2\right|$.
| $m=5-\sqrt{21}$ | |
| $m=20-4\sqrt{21}$ | |
| $m=4\left(5-\sqrt{22}\right)$ | |
| $m=5+\sqrt{22}$ |
Gọi $S$ là tập hợp tất cả các số phức $z$ để số phức $w=|z|-\dfrac{1}{z-1}$ có phần ảo bằng $\dfrac{1}{4}$. Biết rằng $\left|z_1-z_2\right|=3$ với $z_1,\,z_2\in S$, giá trị nhỏ nhất của $\left|z_1+2z_2\right|$ bằng
| $\sqrt{5}-\sqrt{3}$ | |
| $3\sqrt{5}-3$ | |
| $2\sqrt{5}-2\sqrt{3}$ | |
| $3\sqrt{5}-3\sqrt{2}$ |
Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức $z$ thỏa mãn điều kiện $|z-i+2|=2$ là
| Đường tròn tâm $I(1;-2)$, bán kính $R=2$ | |
| Đường tròn tâm $I(-1;2)$, bán kính $R=2$ | |
| Đường tròn tâm $I(2;-1)$, bán kính $R=2$ | |
| Đường tròn tâm $I(-2;1)$, bán kính $R=2$ |
Gọi $S$ là tập hợp tất cả các số phức $z$ sao cho số phức $w=\dfrac{1}{|z|-z}$ có phần thực bằng $\dfrac{1}{8}$. Xét các số phức $z_1,\,z_2\in S$ thỏa mãn $\left|z_1-z_2\right|=2$, giá trị lớn nhất của $P=\left|z_1-5i\right|^2-\left|z_2-5i\right|^2$ bằng
| $16$ | |
| $20$ | |
| $10$ | |
| $32$ |
Có bao nhiêu số phức $z$ có phần thực bằng $2$ và $|z+1-2i|=3$?
| $0$ | |
| $1$ | |
| $3$ | |
| $2$ |
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).
| Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\) | |
| Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\) | |
| Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\) | |
| Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\) |
Cho các số phức $z_1,\,z_2,\,z_3$ thỏa mãn $\big|z_1\big|=\big|z_2\big|=2\big|z_3\big|=2$ và $8\big(z_1+z_2\big)z_3=3z_1z_2$. Gọi $A,\,B,\,C$ lần lượt là các điểm biểu diễn của $z_1,\,z_2,\,z_3$ trên mặt phẳng tọa độ. Diện tích tam giác $ABC$ bằng
| $\dfrac{\sqrt{55}}{32}$ | |
| $\dfrac{\sqrt{55}}{16}$ | |
| $\dfrac{\sqrt{55}}{24}$ | |
| $\dfrac{\sqrt{55}}{8}$ |
Cho các số phức $z,\,w$ thỏa mãn $|z|=4$ và $|w|=5$. Khi $|2z+w-9+12i|$ đạt giá trị nhỏ nhất thì $|z-w|$ bằng
| $\dfrac{11}{2}$ | |
| $\dfrac{\sqrt{13}}{2}$ | |
| $2$ | |
| $1$ |
Trong mặt phẳng $Oxy$ cho hai điểm $A,\,B$ là điểm biểu diễn cho các số phức $z$ và $w=(1+i)z$. Biết tam giác $OAB$ có diện tích bằng $8$. Mô-đun của số phức $w-z$ bằng
| $2$ | |
| $2\sqrt{2}$ | |
| $4\sqrt{2}$ | |
| $4$ |
Có bao nhiêu số phức $z$ thỏa mãn $z^2+2\overline{z}=0$?
| $0$ | |
| $1$ | |
| $2$ | |
| $4$ |