Luyện mãi thành tài, miệt mài tất giỏi
Ngân hàng bài tập
S

Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.

$I(-3;-5)$, $R=\sqrt{5}$
$I(3;-5)$, $R=\sqrt{10}$
$I(-3;5)$, $R=\sqrt{10}$
$I(3;5)$, $R=10$
1 lời giải Huỳnh Phú Sĩ
Trở lại Tương tự
Thêm lời giải
1 lời giải
Huỳnh Phú Sĩ
12:40 22/04/2023

Chọn phương án B.

Giả sử $w=x+yi$. Khi đó $$\begin{array}{lll}
&x+yi&=(1-i)z+2\\
\Rightarrow&(x-2)+yi&=(1-i)z\\
\Rightarrow&\dfrac{(x-2)+yi}{1-i}&=z\\
\Rightarrow&\dfrac{(x-y-2)+(x+y-2)i}{2}&=z\\
\Rightarrow&\dfrac{(x-y-2)-(x+y-2)i}{2}&=\overline{z}.
\end{array}$$

Theo đề bài thì $$\begin{array}{lll}
&\big|\overline{z}-3-2i\big|&=\sqrt{5}\\
\Leftrightarrow&\left|\dfrac{(x-y-2)-(x+y-2)i}{2}-3-2i\right|&=\sqrt{5}\\
\Leftrightarrow&\left|(x-y-2)-(x+y-2)i-6-4i\right|&=2\sqrt{5}\\
\Leftrightarrow&\left|(x-y-8)-(x+y+2)i\right|&=2\sqrt{5}\\
\Leftrightarrow&\sqrt{(x-y-8)^2+(x+y+2)^2}&=2\sqrt{5}\\
\Leftrightarrow&(x-y-8)^2+(x+y+2)^2&=20\\
\Leftrightarrow&2x^2+2y^2-12x+20y+48&=0\\
\Leftrightarrow&x^2+y^2-6x+10y+24&=0.
\end{array}$$
Ta có $\begin{cases}
a=\dfrac{-6}{-2}=3\\ b=\dfrac{10}{-2}=-5\\ c=24.
\end{cases}$

  • Tâm $I(3;-5)$;
  • Bán kính $R=\sqrt{3^2+(-5)^2-24}=\sqrt{10}$.