Có công mài sắt, có ngày nên kim
Ngân hàng bài tập

Toán học

SS

Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:

Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?

$1$
$3$
$2$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.

$V=\dfrac{7\sqrt{6}a^3}{72}$
$V=\dfrac{7\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{72}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $f(x)=ax^3+cx+d$ ($a\neq0$) có $\min\limits_{x\in(0;+\infty)}f(x)=f(2)$. Tìm giá trị lớn nhất của hàm số trên đoạn $[-3;1]$.

$24a+d$
$d-16a$
$8a-d$
$d+16a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Phương trình $3^{2x}-(m+1)3^x+m=0$ có đúng một nghiệm khi

$m=0$
$m>0$
$m>0$, $m\neq1$
$m=1$ hoặc $m\leq0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là

$\dfrac{3a^3}{16}$
$\dfrac{a^3}{16}$
$\dfrac{a^3\sqrt{3}}{16}$
$\dfrac{3\sqrt{3}a^3}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các giá trị thực của tham số $m$ để hàm số $y=\ln\big(x^2-2x+m+1\big)$ có tập xác định là $\mathbb{R}$.

$m=0$
$m< -1$ hoặc $m>0$
$m>0$
$0< m< 3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?

$4$
$2$
$1$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.

Kết luận nào sau đây đúng?

$ad>0$, $bc< 0$
$ad< 0$, $bc>0$
$ad< 0$, $bc< 0$
$ad>0$, $bc>0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.

$V=\dfrac{1}{12}$
$V=\dfrac{1}{3}$
$V=\dfrac{1}{6}$
$V=\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$ và chiều cao bằng $2a$, diện tích xung quanh của hình nón đỉnh $S$ và đáy là hình tròn nội tiếp $ABCD$ bằng

$\dfrac{\pi a^2\sqrt{17}}{8}$
$\dfrac{\pi a^2\sqrt{15}}{4}$
$\dfrac{\pi a^2\sqrt{17}}{4}$
$\dfrac{\pi a^2\sqrt{17}}{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tổng tất cả các nghiệm của phương trình $9^{x^2-2x-7}=3$ là

$2$
$7$
$-7$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình nón đỉnh $S$ có đường cao bằng $6$cm, bán kính đáy bằng $10$cm. Trên đường tròn đáy lấy hai điểm $A,\,B$ sao cho $AB=12$cm. Diện tích tam giác $SAB$ bằng bao nhiêu?

$60\text{ cm}^2$
$40\text{ cm}^2$
$48\text{ cm}^2$
$100\text{ cm}^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Một người gửi vào ngân hàng $100$ triệu với lãi suất $0,5$% một tháng, sau mỗi tháng lãi suất được nhập vào vốn. Hỏi sau một năm người đó rút tiền (cả vốn và lãi) thì tổng số tiền người đó nhận được là bao nhiêu?

$100\cdot(1+12\cdot0,005)^{12}$ triệu đồng
$100\cdot1,005$ triệu đồng
$100\cdot1,005^{12}$ triệu đồng
$100\cdot1,05^{12}$ triệu đồng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho $\log3=a$ và $\log5=b$. Tính $\log_61125$ theo $a$ và $b$.

$\dfrac{3a+2b}{a+1-b}$
$\dfrac{3a-2b}{a+1+b}$
$\dfrac{2a+3b}{a+1-b}$
$\dfrac{3a+2b}{a-1+b}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.

Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?

$3$
$2$
$4$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số $y=\dfrac{1}{3}x^3-mx^2+\big(m^2-m-1\big)x+m^3$ đạt cực đại tại điểm $x=1$ thì giá trị của tham số $m$ bằng

$\left[\begin{array}{l}m=0\\ m=3\end{array}\right.$
$m=0$
$m=-3$
$m=3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Kí hiệu $M$ và $m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=x^2+\sqrt{4-x^2}$. Khi đó $M+m$ bằng

$\dfrac{25}{4}$
$\dfrac{15}{4}$
$4$
$\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số dưới đây.

Hãy xác định hàm số đó.

$y=-x^4-4x^2+1$
$y=x^3-3x+1$
$y=-x^3+3x-1$
$y=x^3+3x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, $SA\perp(ABCD)$ và $SA=2a$. Thể tích của khối tứ diện $SBCD$ là

$\dfrac{a^3}{3}$
$\dfrac{a^3}{4}$
$\dfrac{a^3}{6}$
$\dfrac{a^3}{8}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giá trị cực tiểu của hàm số $y=x^4-4x^2+3$ là

$y_{\text{CT}}=0$
$y_{\text{CT}}=3$
$y_{\text{CT}}=\sqrt{2}$
$y_{\text{CT}}=-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự