Hỏi một câu chỉ dốt chốc lát, nhưng không hỏi sẽ dốt nát cả đời
Ngân hàng bài tập

Toán học

A

Trong không gian, cho tứ diện $ABCD$ có trọng tâm $S$. Gọi $G$ là trọng tâm tam giác $BCD$, $M$ và $N$ lần lượt là trung điểm của $AB$, $CD$. Mệnh đề nào sau đây là sai?

$S$ là trung điểm đoạn $MN$
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$
$S$ nằm trên đoạn $AG$ sao cho $SA=3SG$
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian, cho tứ diện $ABCD$ có $M,\,N$ lần lượt là trung điểm của $AB,\,CD$. Chọn mệnh đề sai trong các mệnh đề sau:

$\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$
$\overrightarrow{NC}+\overrightarrow{NC}=\overrightarrow{0}$
$\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CM}$
$\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AM}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian, điểm $S$ là trọng tâm của tứ diện $ABCD$ nếu

$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$
$\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{SC}+\overrightarrow{SD}$
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=3\overrightarrow{SD}$
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=\overrightarrow{A0}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian, điểm $S$ là trọng tâm của tam giác $ABC$ nếu

$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=\overrightarrow{0}$
$\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{SC}$
$\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{0}$
$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AS}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tứ diện $ABCD$ có $G$ là trọng tâm tam giác $BCD$. Mệnh đề nào sau đây không đúng?

$\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=3\overrightarrow{AG}$
$\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}$
$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$
$\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}-3\overrightarrow{AG}=\overrightarrow{0}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho các số thực $a,\,b$. Chứng minh rằng $$(a+b)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\geq4$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giải bất phương trình $\dfrac{x+11}{5-6x}$.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giải bất phương trình $2x^2+5x+2\leq0$.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$
$11$
$6$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Trong không gian $Oxyz$, cho hai điểm $A(0;0;10)$ và $B(3;4;6)$. Xét các điểm $M$ thay đổi sao cho tam giác $OAM$ không có góc tù và có diện tích bằng $15$. Giá trị nhỏ nhất của độ dài đoạn thẳng $MB$ thuộc khoảng nào dưới đây?
$(4;5)$
$(3;4)$
$(2;3)$
$(6;7)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Cho khối nón có đỉnh $S$, chiều cao bằng $8$ và thể tích bằng $\dfrac{800\pi}{3}$. Gọi $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho $AB=12$, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng $(SAB)$ bằng
$8\sqrt{2}$
$\dfrac{24}{5}$
$4\sqrt{2}$
$\dfrac{5}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $\log_3\big(x^2+y^2+x\big)+\log_2\big(x^2+y^2\big)\leq\log_3x+\log_2\big(x^2+y^2+24x\big)?$
$89$
$48$
$90$
$49$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Trong không gian $Oxyz$, cho điểm $A(0;1;2)$ và đường thẳng $d\colon\dfrac{x-2}{2}=\dfrac{y-1}{2}=\dfrac{z-1}{-3}$. Gọi $(P)$ là mặt phẳng đi qua $A$ và chứa $d$. Khoảng cách từ điểm $M(5;-1;3)$ đến $(P)$ bằng
$5$
$\dfrac{1}{3}$
$1$
$\dfrac{11}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Tên tập hợp số phức, xét phương trình $z^2-2(m+1)z+m^2=0$ ($m$ là tham số thực). Có bao nhiêu giá trị của $m$ để phương trình đó có hai nghiệm phân biệt $z_1$, $z_2$ thỏa mãn $\big|z_1\big|+\big|z_2\big|=2$?
$1$
$4$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+xf'(x)=4x^3+4x+2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng
$\dfrac{5}{2}$
$\dfrac{4}{3}$
$\dfrac{1}{2}$
$\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $B$, $AB=a$. Biết khoảng cách từ $A$ đến mặt phẳng $(A'BC)$ bằng $\dfrac{\sqrt{6}}{3}a$, thể tích khối lăng trụ đã cho bằng
$\dfrac{\sqrt{2}}{6}a^3$
$\dfrac{\sqrt{2}}{2}a^3$
$\sqrt{2}a^3$
$\dfrac{\sqrt{2}}{4}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Xét các số phức $z$ thỏa mãn $\big|z^2-3-4i\big|=2|z|$. Gọi $M$ và $m$ lần lượt là giá trị lớn nhất vả giá trị nhỏ nhất của $|z|$. Giá trị của $M^2+m^2$ bằng
$28$
$18+4\sqrt{6}$
$14$
$11+4\sqrt{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=-x^4+6x^2+mx$ có ba điểm cực trị?
$17$
$15$
$3$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x),\,G(x)$ là hai nguyên hàm của $f(x)$ trên $\mathbb{R}$ thỏa mãn $F(4)+G(4)=4$ và $F(0)+G(0)=1$. Khi đó $\displaystyle\displaystyle\int_0^2f(2x)\mathrm{\,d}x$ bằng
$3$
$\dfrac{3}{4}$
$6$
$\dfrac{3}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
Có bao nhiêu số nguyên $x$ thỏa mãn $\log_3\dfrac{x^2-16}{343}< \log_7\dfrac{x^2-16}{27}$?
$193$
$92$
$186$
$184$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự