Viết phương trình tiếp tuyến $\Delta$ của đồ thị hàm số $y=\sqrt{x}$, biết tiếp tuyến này vuông góc với đường thẳng $d\colon4x+y-1=0$.
Tính đạo hàm của các hàm số sau:
Cho hàm số $y=f(x)=x^3$. Giải phương trình $f'(x)=3$.
![]() | $x=1,\,x=-1$ |
![]() | $x=1$ |
![]() | $x=-1$ |
![]() | $x=\pm3$ |
Điện lượng truyền trong dây dẫn có phương trình $Q=t^2$. Tính cường độ dòng điện tức thời tại thời điểm $t_0=5$ (giây).
![]() | $3$(A) |
![]() | $25$(A) |
![]() | $10$(A) |
![]() | $2$(A) |
Cho $u=u(x)$ và $v=v(x)$. Mệnh đề nào sau đây là đúng?
![]() | $(u.v)^{\prime}=u'.v-u.v'$ |
![]() | $(u.v)^{\prime}=u'.v'$ |
![]() | $(u+v)^{\prime}=u'.v+u.v'$ |
![]() | $(u.v)^{\prime}=u'.v+u.v'$ |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.
![]() | $y=-\dfrac{1}{3}x+\dfrac{1}{3}$ |
![]() | $y=\dfrac{1}{3}x+\dfrac{11}{3}$ |
![]() | $y=\dfrac{1}{3}x-\dfrac{11}{3}$ |
![]() | $y=\dfrac{1}{3}x+\dfrac{1}{3}$ |
Tính đạo hàm của hàm số $y=\sqrt{x+\cos x}$.
![]() | $y'=\dfrac{1+\sin x}{2\sqrt{x+\cos x}}$ |
![]() | $y'=\dfrac{1-\sin x}{\sqrt{x+\cos x}}$ |
![]() | $y'=\dfrac{1-\sin x}{2\sqrt{x+\cos x}}$ |
![]() | $y'=\dfrac{1-\sin x}{2\sqrt{x+\sin x}}$ |
Tính đạo hàm cấp hai của hàm số $y=(4x+3)^8$.
![]() | $y''=224(4x+3)^6$ |
![]() | $y''=32(4x+3)^7$ |
![]() | $y''=56(4x+3)^6$ |
![]() | $y''=896(4x+3)^6$ |
Cho hàm số $y=f(x)=x^3-5x^2+2$ có đồ thị $(\mathscr{C})$. Có bao nhiêu tiếp tuyến của $(\mathscr{C})$ song song với đường thẳng $y=-7x$?
![]() | $3$ |
![]() | $4$ |
![]() | $2$ |
![]() | $1$ |
Cho $u=u(x)$, $v=v(x)$ và $k$ là hằng số. Mệnh đề nào sau đây là sai?
![]() | $(k.u)^{\prime}=k.u'$ |
![]() | $\left(\dfrac{1}{v}\right)^{\prime}=-\dfrac{1}{v^2}$ |
![]() | $\left(u^n\right)^{\prime}=n.u^{n-1}.u'$ |
![]() | $\left(\sqrt{u}\right)^{\prime}=\dfrac{u'}{2\sqrt{u}}$ |
Một chất điểm chuyển động có phương trình $s=t^3-2t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=4$ (giây)?
![]() | $64$m/s |
![]() | $46$m/s |
![]() | $56$m/s |
![]() | $22$m/s |
Biết $\left(x^5-3x^4+2019\right)^{\prime}=ax^4+bx^3$. Tìm $S=a+b$.
![]() | $S=-7$ |
![]() | $S=7$ |
![]() | $S=17$ |
![]() | $S=12$ |
Cho $f(x)=\dfrac{x^2-x+2}{x+1}$. Tính $f'(-2)$.
![]() | $-3$ |
![]() | $-5$ |
![]() | $1$ |
![]() | $0$ |
Mệnh đề nào sau đây là sai?
![]() | $(\cos x)^{\prime}=-\sin x$ |
![]() | $(\sin x)^{\prime}=-\cos x$ |
![]() | $(\cot x)^{\prime}=-\dfrac{1}{\sin^2x}$ |
![]() | $(\tan x)^{\prime}=\dfrac{1}{\cos^2x}$ |
Tính đạo hàm của hàm số $y=\cot3x$.
![]() | $y'=-\dfrac{3}{\sin^2x}$ |
![]() | $y'=\dfrac{3}{\sin^23x}$ |
![]() | $y'=-\dfrac{3}{\sin^33x}$ |
![]() | $y'=-\dfrac{3}{\sin^23x}$ |
Viết phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(-2;6)$.
![]() | $y=-11x-16$ |
![]() | $y=-11x-28$ |
![]() | $y=-11x+28$ |
![]() | $y=-11x+16$ |
Cho hàm số $f(x)=x^3-2x^2+x+3$. Nghiệm của bất phương trình $f'(x)< 0$ là
![]() | $1< x< 3$ |
![]() | $-1< x< \dfrac{1}{3}$ |
![]() | $\dfrac{1}{3}< x< 1$ |
![]() | $-\dfrac{1}{3}< x< 1$ |
Ông An muốn làm cửa rào sắt có hình dạng và kích thước như hình vẽ bên, biết đường cong phía trên là một Parabol. Giá $1m^2$ của rào sắt là $700 000$ đồng.
Hỏi ông An phải trả bao nhiêu tiền để làm cái cửa sắt như vậy (làm tròn đến hàng phần nghìn).
(Cảm ơn tác giả đã vẽ hình và trình bày, cảm ơn TS. Trần Lê Nam đã chia sẻ)
![]() | $6 520 000$ đồng |
![]() | $6 320 000$ đồng |
![]() | $6 417 000$ đồng |
![]() | $6 620 000$ đồng |
Cho hàm số $y=f(x)$ là hàm liên tục có tích phân trên $[0;2]$ thỏa điều kiện $f\left(x^2\right)=6x^4+\displaystyle\displaystyle\int\limits_{0}^{2}xf(x)\mathrm{\,d}x$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$.
![]() | $I=-8$ |
![]() | $I=-24$ |
![]() | $I=-32$ |
![]() | $I=-6$ |
Gọi $S$ là tập hợp tất cả các số phức $z$ để số phức $w=|z|-\dfrac{1}{z-1}$ có phần ảo bằng $\dfrac{1}{4}$. Biết rằng $\left|z_1-z_2\right|=3$ với $z_1,\,z_2\in S$, giá trị nhỏ nhất của $\left|z_1+2z_2\right|$ bằng
![]() | $\sqrt{5}-\sqrt{3}$ |
![]() | $3\sqrt{5}-3$ |
![]() | $2\sqrt{5}-2\sqrt{3}$ |
![]() | $3\sqrt{5}-3\sqrt{2}$ |