Cho số phức \(z\) thỏa mãn \(|z+2-\mathrm{i}|=3\). Tìm tập hợp các điểm trong mặt phẳng \(Oxy\) biểu diễn số phức \(w=1+\overline{z}\).
| Đường tròn tâm \(I(-2;1)\) bán kính \(R=3\) | |
| Đường tròn tâm \(I(2;-1)\) bán kính \(R=3\) | |
| Đường tròn tâm \(I(-1;-1)\) bán kính \(R=9\) | |
| Đường tròn tâm \(I(-1;-1)\) bán kính \(R=3\) |
Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.
| $I(-3;-5)$, $R=\sqrt{5}$ | |
| $I(3;-5)$, $R=\sqrt{10}$ | |
| $I(-3;5)$, $R=\sqrt{10}$ | |
| $I(3;5)$, $R=10$ |
Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.
Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?
| $M$ | |
| $Q$ | |
| $P$ | |
| $N$ |
Cho số phức $z$ thỏa điều kiện $|z|=10$ và $w=(6+8i)\cdot\overline{z}+(1-2i)^2$. Tập hợp điểm biểu diễn cho số phức $w$ là đường tròn có tâm là
| $I(-3;-4)$ | |
| $I(3;4)$ | |
| $I(6;8)$ | |
| $I(1;-2)$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?
| $4$ | |
| $1$ | |
| $3$ | |
| $2$ |
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).
| Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\) | |
| Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\) | |
| Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\) | |
| Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\) |
Cho hai số phức \(z=3-5\mathrm{i}\) và \(w=-1+2\mathrm{i}\). Điểm biểu diễn số phức \(\varphi=\overline{z}-w\cdot z\) trong mặt phẳng \(Oxy\) có tọa độ là
| \((-4;-6)\) | |
| \((4;6)\) | |
| \((4;-6)\) | |
| \((-6;-4)\) |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
| $\left(-1;-\dfrac{2}{3}\right)$ | |
| $\left(-1;\dfrac{2}{3}\right)$ | |
| $\left(1;-\dfrac{2}{3}\right)$ | |
| $\left(1;\dfrac{2}{3}\right)$ |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.

Phần ảo của số phức $(1+i)z$ bằng
| $7$ | |
| $-7$ | |
| $-1$ | |
| $1$ |
Tập hợp các số phức $z$ thỏa mãn $|z+1-2i|=3$ là đường tròn có tâm
| $I(-1;2)$ | |
| $I(-1;-2)$ | |
| $I(1;-2)$ | |
| $I(1;2)$ |
Cho số phức $z=1-3i$. Số phức $w=(1-i)z+\overline{z}$ có phần ảo bằng
| $1$ | |
| $-1$ | |
| $-i$ | |
| $i$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?
| Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$ | |
| $z^2=|z|^2$ | |
| Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$ | |
| Mô-đun của $z$ là một số thực dương |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
| $P(3;-12)$ | |
| $Q(3;12)$ | |
| $M(14;-5)$ | |
| $N(-3;12)$ |
Tìm phần thực, phần ảo, số phức liên hợp và tính môđun của số phức $$z=\left(2-4i\right)\left(5+2i\right)+\dfrac{4-5i}{2+i}.$$
Cho các số phức $z_1,\,z_2,\,z_3$ thỏa mãn $\big|z_1\big|=\big|z_2\big|=2\big|z_3\big|=2$ và $8\big(z_1+z_2\big)z_3=3z_1z_2$. Gọi $A,\,B,\,C$ lần lượt là các điểm biểu diễn của $z_1,\,z_2,\,z_3$ trên mặt phẳng tọa độ. Diện tích tam giác $ABC$ bằng
| $\dfrac{\sqrt{55}}{32}$ | |
| $\dfrac{\sqrt{55}}{16}$ | |
| $\dfrac{\sqrt{55}}{24}$ | |
| $\dfrac{\sqrt{55}}{8}$ |
Cho số phức $z$ thỏa mãn $(2-i)z=-3+7i$. Số phức liên hợp của $z$ có phần ảo bằng
| $-\dfrac{11}{5}$ | |
| $-\dfrac{11}{5}i$ | |
| $\dfrac{11}{5}i$ | |
| $\dfrac{11}{5}$ |
Cho số phức $z$ thỏa mãn $iz=5+4i$. Số phức liên hợp của $z$ là
| $\overline{z}=4+5i$ | |
| $\overline{z}=4-5i$ | |
| $\overline{z}=-4+5i$ | |
| $\overline{z}=-4-5i$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
| $\left(5;1\right)$ | |
| $\left(-1;-5\right)$ | |
| $\left(1;5\right)$ | |
| $\left(-5;-1\right)$ |
Số phức liên hợp của số phức $z=i\left(3-4i\right)$ là
| $\overline{z}=4+3i$ | |
| $\overline{z}=-4-3i$ | |
| $\overline{z}=4-3i$ | |
| $\overline{z}=-4+3i$ |
Cho số phức $z$ có phần thực là số nguyên và $z$ thỏa mãn $|z|-2\overline{z}=-7+3i+z$. Tính môđun của số phức $\omega=1-z$.
| $|\omega|=\sqrt{37}$ | |
| $|\omega|=3\sqrt{2}$ | |
| $|\omega|=7$ | |
| $|\omega|=5$ |