Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.
Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?
| $M$ | |
| $Q$ | |
| $P$ | |
| $N$ |
Cho số phức \(z\) thỏa mãn \(|z+2-\mathrm{i}|=3\). Tìm tập hợp các điểm trong mặt phẳng \(Oxy\) biểu diễn số phức \(w=1+\overline{z}\).
| Đường tròn tâm \(I(-2;1)\) bán kính \(R=3\) | |
| Đường tròn tâm \(I(2;-1)\) bán kính \(R=3\) | |
| Đường tròn tâm \(I(-1;-1)\) bán kính \(R=9\) | |
| Đường tròn tâm \(I(-1;-1)\) bán kính \(R=3\) |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
| $\left(-1;-\dfrac{2}{3}\right)$ | |
| $\left(-1;\dfrac{2}{3}\right)$ | |
| $\left(1;-\dfrac{2}{3}\right)$ | |
| $\left(1;\dfrac{2}{3}\right)$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
| $P(3;-12)$ | |
| $Q(3;12)$ | |
| $M(14;-5)$ | |
| $N(-3;12)$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
| $\left(5;1\right)$ | |
| $\left(-1;-5\right)$ | |
| $\left(1;5\right)$ | |
| $\left(-5;-1\right)$ |
Điểm nào trong hình vẽ dưới đây là điểm biểu diễn của số phức $z=\dfrac{i-3}{1+i}$?

| Điểm $B$ | |
| Điểm $C$ | |
| Điểm $A$ | |
| Điểm $D$ |
Trong mặt phẳng tọa độ, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\dfrac{z+4i}{z-4i}$ là một số thực dương.
| Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$) | |
| Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $2i$, $J$ là điểm biểu diễn $-2i$) | |
| Đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$) | |
| Trục $Ox$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4$, $J$ là điểm biểu diễn $-4$) |
Tìm tọa độ của điểm biểu diễn số phức $z=\dfrac{3+4i}{1-i}$ trên mặt phẳng tọa độ.
| $Q\left(\dfrac{1}{2};-\dfrac{7}{2}\right)$ | |
| $N\left(\dfrac{1}{2};\dfrac{7}{2}\right)$ | |
| $P\left(-\dfrac{1}{2};\dfrac{7}{2}\right)$ | |
| $M\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)$ |
Cho hai số phức $z_1=1-2i$ và $z_2=3+4i$. Tìm điểm $M$ biểu diễn số phức $z_1\cdot z_2$ trên mặt phẳng tọa độ.
| $M(-2;11)$ | |
| $M(11;2)$ | |
| $M(11;-2)$ | |
| $M(-2;-11)$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?
| $4$ | |
| $1$ | |
| $3$ | |
| $2$ |
Cho số phức $z=6+7i$. Số phức liên hợp của $z$ có điểm biểu diễn là điểm nào sau đây?
| $N(-6;7)$ | |
| $M(6;-7)$ | |
| $Q(6;7)$ | |
| $P(-6;-7)$ |
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).
| Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\) | |
| Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\) | |
| Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\) | |
| Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\) |
Cho số phức \(z=6+7i\). Điểm \(M\) biểu diễn cho số phức \(\overline{z}\) trên mặt phẳng \(Oxy\) là
| \(M(-6;-7)\) | |
| \(M(6;-7)\) | |
| \(M(6;7i)\) | |
| \(M(6;7)\) |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z=\left(1+2i\right)^2\) là điểm nào dưới đây?
| \(P\left(-3;4\right)\) | |
| \(Q\left(5;4\right)\) | |
| \(N\left(4;-3\right)\) | |
| \(M\left(4;5\right)\) |
Cho số phức \(z=1-\mathrm{i}\). Biểu diễn số phức \(z^2\) là điểm
| \(N(-2;0)\) | |
| \(Q(0;-2)\) | |
| \(P(2;0)\) | |
| \(M(1;2)\) |
Điểm nào sau đây biểu diễn số phức \(z=\mathrm{i}(7-4\mathrm{i})\) trong mặt phẳng tọa độ?
| \(P(-4;7)\) | |
| \(M(4;7)\) | |
| \(Q(-4;-7)\) | |
| \(N(4;-7)\) |

Trong hình vẽ, điểm \(P\) biểu diễn số phức \(z_1\), điểm \(Q\) biểu diễn số phức \(z_2\). Tìm số phức \(z=z_1+z_2\).
| \(z=1+3\mathrm{i}\) | |
| \(z=-3+\mathrm{i}\) | |
| \(z=-1+2\mathrm{i}\) | |
| \(z=2+\mathrm{i}\) |
Cho số phức \(z\) thỏa mãn \((1-2i)z+(1+3i)^2=5i\). Khi đó điểm nào sau đây biểu diễn số phức \(z\)?
| \(M(2;-3)\) | |
| \(N(2;3)\) | |
| \(P(-2;3)\) | |
| \(Q(-2;-3)\) |
Gọi \(M\) và \(M'\) lần lượt là các điểm biểu diễn của số phức \(z\) và \(\overline{z}\). Tìm mệnh đề đúng.
| \(M,\,M'\) đối xứng nhau qua trục hoành | |
| \(M,\,M'\) đối xứng nhau qua trục tung | |
| \(M,\,M'\) đối xứng nhau qua gốc tọa độ | |
| Ba điểm \(O,\,M,\,M'\) thẳng hàng |
Cho số phức \(z\) có điểm biểu diễn trên mặt phẳng \(Oxy\) là điểm \(M(3;-5)\). Xác định số phức liên hợp \(\overline{z}\) của \(z\).
| \(\overline{z}=-5+3\mathrm{i}\) | |
| \(\overline{z}=5+3\mathrm{i}\) | |
| \(\overline{z}=3+5\mathrm{i}\) | |
| \(\overline{z}=3-5\mathrm{i}\) |