Tìm phần thực, phần ảo, số phức liên hợp và tính môđun của số phức $$z=\left(2-4i\right)\left(5+2i\right)+\dfrac{4-5i}{2+i}.$$
Cho số phức $z$ thỏa mãn $(2-i)z=-3+7i$. Số phức liên hợp của $z$ có phần ảo bằng
| $-\dfrac{11}{5}$ | |
| $-\dfrac{11}{5}i$ | |
| $\dfrac{11}{5}i$ | |
| $\dfrac{11}{5}$ |
Cho số phức $z$ thỏa mãn $i\overline{z}=5+2i$. Phần ảo của $z$ bằng
| $5$ | |
| $2$ | |
| $-5$ | |
| $-2$ |
Cho số phức \(z\) thỏa mãn \(z+2\overline{z}=6-3i\) có phần ảo bằng
| \(-3\) | |
| \(3\) | |
| \(3i\) | |
| \(2i\) |
Cho \(z\) là một số thuần ảo khác \(0\). Mệnh đề nào sau đây đúng?
| \(\overline{z}\) là số thực | |
| Phần ảo của \(z\) bằng \(0\) | |
| \(z=\overline{z}\) | |
| \(z+\overline{z}=0\) |
Cho hai số phức \(z_1=-3+i\) và \(z_2=1-i\). Phần ảo của số phức \(z_1+\overline{z_2}\) bằng
| \(-2\) | |
| \(2i\) | |
| \(2\) | |
| \(-2i\) |
Cho số phức \(z=2-3\mathrm{i}\). Tìm phần ảo của số phức $$w=(1+\mathrm{i})z-(2-\mathrm{i})\overline{z}$$
| \(-5\) | |
| \(-9\) | |
| \(-5\mathrm{i}\) | |
| \(-9\mathrm{i}\) |
Cho số phức $z=1-2i$. Phần ảo của số phức $\overline{z}$ bằng
| $-1$ | |
| $2$ | |
| $1$ | |
| $-2$ |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.

Phần ảo của số phức $(1+i)z$ bằng
| $7$ | |
| $-7$ | |
| $-1$ | |
| $1$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?
| Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$ | |
| $z^2=|z|^2$ | |
| Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$ | |
| Mô-đun của $z$ là một số thực dương |
Cho số phức $z$ thỏa mãn $iz=5+4i$. Số phức liên hợp của $z$ là
| $\overline{z}=4+5i$ | |
| $\overline{z}=4-5i$ | |
| $\overline{z}=-4+5i$ | |
| $\overline{z}=-4-5i$ |
Số phức liên hợp của số phức $z=i\left(3-4i\right)$ là
| $\overline{z}=4+3i$ | |
| $\overline{z}=-4-3i$ | |
| $\overline{z}=4-3i$ | |
| $\overline{z}=-4+3i$ |
Cho số phức $z$ có phần thực là số nguyên và $z$ thỏa mãn $|z|-2\overline{z}=-7+3i+z$. Tính môđun của số phức $\omega=1-z$.
| $|\omega|=\sqrt{37}$ | |
| $|\omega|=3\sqrt{2}$ | |
| $|\omega|=7$ | |
| $|\omega|=5$ |
Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.
Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?
| $M$ | |
| $Q$ | |
| $P$ | |
| $N$ |
Số phức $z$ có điểm biểu diễn $M$ trong hình vẽ bên.
Phần ảo của số phức $z+i$ bằng
| $4$ | |
| $3i$ | |
| $2$ | |
| $6$ |
Cho số phức $z$ thỏa mãn $\overline{z}=\dfrac{(1-2i)(i-1)}{1+i}$. Tính môđun của số phức $w=iz$.
| $3$ | |
| $\sqrt{12}$ | |
| $\sqrt{5}$ | |
| $5$ |
Cho số phức $z=3+4i$. Tính giá trị của $z\cdot\overline{z}$.
| $-1$ | |
| $25$ | |
| $\sqrt{7}$ | |
| $1$ |
Cho số phức $z=-1+5i$. Phần ảo của số phức $\overline{z}$ bằng
| $-5$ | |
| $5$ | |
| $1$ | |
| $-1$ |
Có bao nhiêu số phức $z$ thỏa mãn $z^2+2\overline{z}=0$?
| $0$ | |
| $1$ | |
| $2$ | |
| $4$ |
Biết phương trình $z^2+2z+m=0$ ($m\in\mathbb{R}$) có một nghiệm là $z_1=-1+3i$. Gọi $z_2$ là nghiệm còn lại. Phần ảo của số phức $w=z_1-2z_2$ bằng
| $1$ | |
| $-3$ | |
| $9$ | |
| $-9$ |