Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
| $y'=\dfrac{1-\ln2x}{x^2}$ | |
| $y'=\dfrac{\ln2x}{2x}$ | |
| $y'=\dfrac{\ln2x}{x^2}$ | |
| $y'=\dfrac{1}{2x}$ |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.
| $f(5)=2020-\dfrac{1}{2}\ln2$ | |
| $f(5)=2021-\ln2$ | |
| $f(5)=2021+\ln2$ | |
| $f(5)=2020+\ln2$ |
Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1}\left(3x^2+\mathrm{e}^x+\dfrac{1}{x+1}\right)\mathrm{d}x$.
Tích phân $\displaystyle\displaystyle\int\limits_{0}^{2}\dfrac{2}{2x+1}\mathrm{d}x$ bằng
| $2\ln5$ | |
| $\dfrac{1}{2}\ln5$ | |
| $\ln5$ | |
| $4\ln5$ |
Có bao nhiêu số nguyên $a\in(1;17)$ sao cho $\displaystyle\displaystyle\int\limits_1^5\dfrac{\mathrm{d}x}{2x-1}>\ln\left(\dfrac{a}{2}\right)$?
| $4$ | |
| $9$ | |
| $15$ | |
| $0$ |
Biết $\displaystyle\displaystyle\int\limits_{-1}^1\left(\dfrac{9}{x-3}-\dfrac{7}{x-2}\right)\mathrm{\,d}x=a\ln{3}-b\ln{2}$. Tính giá trị $P=a^2+b^2$.
| $P=32$ | |
| $P=130$ | |
| $P=2$ | |
| $P=16$ |
Cho hàm số $f\left(x\right)=\dfrac{1}{2x-1}$. Tính $f''\left(-1\right)$.
| $-\dfrac{8}{27}$ | |
| $\dfrac{2}{9}$ | |
| $\dfrac{8}{27}$ | |
| $-\dfrac{4}{27}$ |
Tìm đạo hàm của hàm số $y=\dfrac{1}{\sin2x}$.
| $y'=-\dfrac{\cos2x}{\sin^22x}$ | |
| $y'=\dfrac{2\cos2x}{\sin^22x}$ | |
| $y'=-\dfrac{2\cos x}{\sin^22x}$ | |
| $y'=-\dfrac{2\cos2x}{\sin^22x}$ |
Tìm đạo hàm của hàm số \(y=\dfrac{1}{x^2-2x+5}\).
| \(y'=\dfrac{2x-2}{\left(x^2-2x+5\right)^2}\) | |
| \(y'=\dfrac{-2x+2}{\left(x^2-2x+5\right)^2}\) | |
| \(y'=(2x-2)\left(x^2-2x+5\right)\) | |
| \(y'=\dfrac{1}{2x-2}\) |
Tìm đạo hàm của hàm số \(y=\dfrac{1}{\sqrt{x+1}-\sqrt{x-1}}\).
| \(y'=-\dfrac{1}{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}\) | |
| \(y'=\dfrac{1}{2\left(\sqrt{x+1}+\sqrt{x-1}\right)}\) | |
| \(y'=\dfrac{1}{4\sqrt{x+1}}+\dfrac{1}{4\sqrt{x-1}}\) | |
| \(y'=\dfrac{1}{2\sqrt{x+1}}+\dfrac{1}{2\sqrt{x-1}}\) |
Tìm đạo hàm của hàm số \(y=\dfrac{1}{\sqrt{x^2+1}}\).
| \(y'=\dfrac{x}{\left(x^2+1\right)\sqrt{x^2+1}}\) | |
| \(y'=\dfrac{-x}{\left(x^2+1\right)\sqrt{x^2+1}}\) | |
| \(y'=\dfrac{x}{2\left(x^2+1\right)\sqrt{x^2+1}}\) | |
| \(y'=-\dfrac{x\left(x^2+1\right)}{\sqrt{x^2+1}}\) |
Tích phân \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{2x+3}\) bằng
| \(\dfrac{1}{2}\ln\dfrac{7}{5}\) | |
| \(\ln\dfrac{7}{5}\) | |
| \(2\ln\dfrac{7}{5}\) | |
| \(\dfrac{1}{2}\ln35\) |
Giả sử tích phân \(I=\displaystyle\int\limits_{1}^{6}\dfrac{1}{2x+1}\mathrm{\,d}x=\ln M\), tìm \(M\).
| \(M=13\) | |
| \(M=4,33\) | |
| \(M=\sqrt{\dfrac{13}{3}}\) | |
| \(M=\dfrac{13}{3}\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{1}{2x-1}\mathrm{\,d}x=\ln a\). Giá trị của \(a\) là
| \(81\) | |
| \(27\) | |
| \(3\) | |
| \(9\) |
Cho hàm số \(f\left(x\right)\) có \(f\left(3\right)=3\) và \(f'\left(x\right)=\dfrac{x}{x+1-\sqrt{x+1}}\), \(\forall x>0\). Khi đó \(\displaystyle\int\limits_3^8f\left(x\right)\mathrm{\,d}x\) bằng
| \(7\) | |
| \(\dfrac{197}{6}\) | |
| \(\dfrac{29}{2}\) | |
| \(\dfrac{181}{6}\) |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:

Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
| $1$ | |
| $3$ | |
| $2$ | |
| $4$ |
Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
| $y'=\dfrac{1-\ln2x}{x^2}$ | |
| $y'=\dfrac{\ln2x}{2x}$ | |
| $y'=\dfrac{\ln2x}{x^2}$ | |
| $y'=\dfrac{1}{2x}$ |
Đạo hàm của hàm số $y=\ln\big(x^2+2\big)$ là
| $y'=\dfrac{1}{x^2+2}$ | |
| $y'=\dfrac{x}{x^2+2}$ | |
| $y'=\dfrac{2}{x^2+2}$ | |
| $y'=\dfrac{2x}{x^2+2}$ |
Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+x f'(x)=4x^3-6x^2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng
| $\dfrac{7}{12}$ | |
| $\dfrac{45}{4}$ | |
| $\dfrac{1}{2}$ | |
| $\dfrac{71}{6}$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x)$ và $G(x)$ là hai nguyên hàm của $f(x)$ thỏa mãn $2F(3)+G(3)=9+2F(-1)+G(-1)$. Khi đó $\displaystyle\displaystyle\int\limits_0^2\big(x^2+f(3-2x)\big)\mathrm{\,d}x$ bằng
| $\dfrac{25}{6}$ | |
| $\dfrac{7}{6}$ | |
| $\dfrac{43}{6}$ | |
| $3$ |