Ngân hàng bài tập

Bài tập tương tự

SSS

Có bao nhiêu số nguyên dương $a$ sao cho ứng với mỗi số $a$ có đúng ba số nguyên $b$ thỏa mãn $\big(3^b-3\big)\big(a\cdot2^b-18\big)< 0$?

$72$
$73$
$71$
$74$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.

$m=1$
$m=4$
$m=13$
$m=8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.

$m\geq2$
$m\leq2$
$m=2$
$m>2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hàm số $f\left(x\right)=x^3-2x^2+mx-3$ . Tìm $m$ để $f'\left(x\right)< 0$ với mọi $x\in\left(0;2\right)$.

1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho số phức $z=m+1+mi$ với $m\in\mathbb{R}$. Hỏi có bao nhiêu giá trị nguyên của $m\in(-5;5)$ sao cho $|z-2i|>1$?

$0$
$4$
$5$
$9$
1 lời giải Sàng Khôn
Lời giải Tương tự
SSS

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là

\(9\)
\(10\)
Vô số
\(0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).

\(m\leq3\)
\(m\leq-3\)
\(m\leq5\)
\(m\leq-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Bất phương trình \((m-1)x^2-2(m-1)x+m+3>0\) nghiệm đúng với mọi \(x\in\mathbb{R}\) khi và chỉ khi

\(m\in(2;+\infty)\)
\(m\in[1;+\infty)\)
\(m\in(-2;7)\)
\(m\in(1;+\infty)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tập nghiệm của bất phương trình $$x^2+\left(\sqrt{3}+\sqrt{2}\right)x+\sqrt{6}\leq0$$là đoạn \([m;n]\). Tính \(m^2-n^2\).

\(m^2-n^2=\sqrt{3}-\sqrt{2}\)
\(m^2-n^2=\sqrt{2}-\sqrt{3}\)
\(m^2-n^2=1\)
\(m^2-n^2=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết rằng miền xác định của bất phương trình \(\sqrt{6-3x}+\dfrac{1}{x+1}>2\) là nửa khoảng \((a;b]\). Giá trị của \(S=2a+b\) bằng bao nhiêu?

\(S=0\)
\(S=-2\)
\(S=3\)
\(S=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho các số phức \(z_1=3i\), \(z_2=-1-3i\) và \(z_3=m-2i\). Tập giá trị của tham số \(m\) để số phức \(z_3\) có môđun nhỏ nhất trong \(3\) số phức đã cho là

\(\left[-\sqrt{5};\sqrt{5}\right]\)
\(\left(-\sqrt{5};\sqrt{5}\right)\)
\(\left\{-\sqrt{5};\sqrt{5}\right\}\)
\(\left(-\infty;\sqrt{5}\right)\cup\left(\sqrt{5};+\infty\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho phương trình \(\log_2^2(2x)-(m+2)\log_2x+m-2=0\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn \([1;2]\) là

\(\left(1;2\right)\)
\(\left[1;2\right]\)
\(\left[1;2\right)\)
\(\left[2;+\infty\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tập nghiệm của bất phương trình \(\log_2^2x-3\log_2x+2<0\) là khoảng \((a;b)\). Tính \(a^2+b^2\).

\(16\)
\(5\)
\(20\)
\(10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Với giá trị nào của \(m\) thì bất phương trình \(x^2-x+m\leq0\) vô nghiệm?

\(m>\dfrac{1}{4}\)
\(m>1\)
\(m<1\)
\(m<\dfrac{1}{4}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.

$32$
$29$
$25$
$46$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số thực $x,\,y$ bất kì. Khẳng định nào dưới đây đúng?

$5^x< 5^y\Leftrightarrow x>y$
$5^x>5^y\Leftrightarrow x>y$
$5^x>5^y\Leftrightarrow x< y$
$5^x>5^y\Leftrightarrow x=y$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập nghiệm của bất phương trình $3^x>5$ là

$\big(0;\log_35\big)$
$\big(\log_53;+\infty\big)$
$\big(\log_35;+\infty\big)$
$\big(0;\log_53\big)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét các số thực $x,\,y$ thỏa mãn $x^2+y^2>1$ và $\log_{x^2+y^2}(2x+4y)\geq1$. Giá trị lớn nhất của biểu thức $P=3x+y$ bằng

$5+2\sqrt{10}$
$5+4\sqrt{5}$
$5+5\sqrt{2}$
$10+2\sqrt{5}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu số nguyên $y\in(-2022;2022]$ để bất phương trình $2+\log_{\sqrt{3}}(y-1)\leq\log_{\sqrt{3}}\big[x^2-2(3+y)x+2y^2+24\big]$ nghiệm đúng với mọi $x\in\mathbb{R}$?

$2011$
$2021$
$2019$
$4041$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số nghiệm nguyên của bất phương trình $\log_4(2x+3)< 2$ là

$7$
$8$
$9$
$10$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự