Nếu $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=-1$ và $\displaystyle\displaystyle\int\limits_{0}^{1}g(x)\mathrm{d}x=3$ thì $\displaystyle\displaystyle\int\limits_{0}^{1}\big[2f(x)-g(x)\big]\mathrm{d}x$ bằng
| $1$ | |
| $-5$ | |
| $-4$ | |
| $-1$ |
Chọn phương án B.
Ta có $\begin{aligned}[t]
\displaystyle\int\limits_{0}^{1}\big[2f(x)-g(x)\big]\mathrm{d}x&=2\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x-\displaystyle\int\limits_{0}^{1}g(x)\mathrm{d}x\\ &=-2-3=-5.
\end{aligned}$