Nếu $\displaystyle\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x=2$, $\displaystyle\displaystyle\int\limits_1^4f(x)\mathrm{\,d}x=-1$ thì $\displaystyle\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x$ bằng
| $-3$ | |
| $1$ | |
| $-2$ | |
| $3$ |
Chọn phương án A.
$\displaystyle\int\limits_1^4f(x)\mathrm{\,d}x=\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x+\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x\Leftrightarrow-1=2+\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x$.
Vậy $\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x=-1-2=-3$.