Tìm tập nghiệm \(S\) của phương trình \(2\cos2x+1=0\).
| \(S=\left\{\dfrac{\pi}{3}+k2\pi,-\dfrac{\pi}{3}+k2\pi,k\in\mathbb{Z}\right\}\) | |
| \(S=\left\{\dfrac{2\pi}{3}+k2\pi,-\dfrac{2\pi}{3}+k2\pi,k\in\mathbb{Z}\right\}\) | |
| \(S=\left\{\dfrac{\pi}{3}+k\pi,-\dfrac{\pi}{3}+k\pi,k\in\mathbb{Z}\right\}\) | |
| \(S=\left\{\dfrac{\pi}{6}+k\pi,-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\right\}\) |
Chọn phương án C.
\(\begin{eqnarray*}
&2\cos2x+1&=0\\
\Leftrightarrow&\cos2x&=-\dfrac{1}{2}\\
\Leftrightarrow&2x&=\pm\dfrac{2\pi}{3}+k2\pi\\
\Leftrightarrow&x&=\pm\dfrac{\pi}{3}+k\pi,\,k\in\mathbb{Z}.
\end{eqnarray*}\)
Vậy \(S=\left\{\dfrac{\pi}{3}+k\pi,-\dfrac{\pi}{3}+k\pi,k\in\mathbb{Z}\right\}\).