Ngân hàng bài tập
B

Giải phương trình \(\sin\left(2x+\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\).

\(\left[\begin{array}{l}x=-\dfrac{\pi}{4}+k\pi\\ x=\dfrac{5\pi}{12}+k\pi\end{array}\right.\,(k\in\mathbb{Z})\)
\(\left[\begin{array}{l}x=\dfrac{\pi}{4}+k\pi\\ x=\dfrac{5\pi}{12}+k\pi\end{array}\right.\,(k\in\mathbb{Z})\)
\(\left[\begin{array}{l}x=-\dfrac{\pi}{4}+k\dfrac{\pi}{2}\\ x=\dfrac{\pi}{12}+k\dfrac{\pi}{2}\end{array}\right.\,(k\in\mathbb{Z})\)
\(\left[\begin{array}{l}x=-\dfrac{\pi}{4}+k\dfrac{\pi}{2}\\ x=\dfrac{\pi}{12}+k\dfrac{\pi}{2}\end{array}\right.\,(k\in\mathbb{Z})\)
1 lời giải Huỳnh Phú Sĩ
Trở lại Tương tự
Thêm lời giải
1 lời giải
Huỳnh Phú Sĩ
11:14 27/09/2020

Chọn phương án A.

\(\begin{aligned}
\sin\left(2x+\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\Leftrightarrow&\left[\begin{array}{l}2x+\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\\ 2x+\dfrac{\pi}{3}=\dfrac{7\pi}{6}+k2\pi\end{array}\right.\\
\Leftrightarrow&\left[\begin{array}{l}2x=-\dfrac{\pi}{2}+k2\pi\\ 2x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{array}\right.\\
\Leftrightarrow&\left[\begin{array}{l}x=-\dfrac{\pi}{4}+k\pi\\ x=\dfrac{5\pi}{12}+k\pi\end{array}\right.\,(k\in\mathbb{Z}).
\end{aligned}\)

Ta có thể dùng chức năng r trên máy tính cầm tay (với \(k=1\)) để kiểm tra từng phương án.