Giải phương trình \(\sin\left(\dfrac{2x}{3}-\dfrac{\pi}{3}\right)=0\).
| \(x=k\pi\,(k\in\mathbb{Z})\) | |
| \(x=\dfrac{2\pi}{3}+k\dfrac{3\pi}{2}\,(k\in\mathbb{Z})\) | |
| \(x=\dfrac{\pi}{3}+k\pi\,(k\in\mathbb{Z})\) | |
| \(x=\dfrac{\pi}{2}+k\dfrac{3\pi}{2}\,(k\in\mathbb{Z})\) |
Chọn phương án D.
\(\begin{aligned}
\sin\left(\dfrac{2x}{3}-\dfrac{\pi}{3}\right)=0\Leftrightarrow&\dfrac{2x}{3}-\dfrac{\pi}{3}=k\pi\\
\Leftrightarrow&\dfrac{2x}{3}=\dfrac{\pi}{3}+k\pi\\
\Leftrightarrow&2x=\pi+k3\pi\\
\Leftrightarrow&x=\dfrac{\pi}{2}+k\dfrac{3\pi}{2}\,(k\in\mathbb{Z}).
\end{aligned}\)