Cho biết \(\displaystyle\int\limits_{2}^{5}f(x)\mathrm{\,d}x=3\), \(\displaystyle\int\limits_{2}^{5}g(t)\mathrm{\,d}t=9\). Tính \(\displaystyle\int\limits_{2}^{5}\left[f(x)-2g(x)\right]\mathrm{\,d}x\).
| \(-6\) | |
| \(-15\) | |
| \(12\) | |
| \(21\) |
Chọn phương án B.
\(\begin{align*}\displaystyle\int\limits_{2}^{5}\left[f(x)-2g(x)\right]\mathrm{\,d}x&=\displaystyle\int\limits_{2}^{5}f(x)\mathrm{\,d}x-2\displaystyle\int\limits_{2}^{5}g(x)\mathrm{\,d}x\\
&=\displaystyle\int\limits_{2}^{5}f(x)\mathrm{\,d}x-2\displaystyle\int\limits_{2}^{5}g(t)\mathrm{\,d}t\\
&=3-2\cdot 9=-15.\end{align*}\)