Giả sử \(\displaystyle\int\limits_a^bf(x)\mathrm{\,d}x=2\), \(\displaystyle\int\limits_c^bf(x)\mathrm{\,d}x=3\) với \(a< b< c\) thì \(\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x\) bằng
| \(-5\) | |
| \(1\) | |
| \(-1\) | |
| \(5\) |
Chọn phương án C.
\(\begin{eqnarray*}
\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x&=&\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\int\limits_b^c f(x)\mathrm{\,d}x\\
&=&\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x-\displaystyle\int\limits_c^b f(x)\mathrm{\,d}x\\
&=&2-3=-1.\end{eqnarray*}\)