Ngân hàng bài tập
B

Cho hàm số \(f\left(x\right)\) có đạo hàm trên đoạn \(\left[0;2\right]\) và \(f\left(0\right)=-1\), biết \(\displaystyle\int\limits_{0}^{2} f'\left(x\right)\mathrm{\,d}x = 5\). Tính \(f\left(2\right)\).

\(f\left(2\right) = 2\)
\(f\left(2\right) = 6\)
\(f\left(2\right) = 4\)
\(f\left(2\right) = 5\)
1 lời giải Huỳnh Phú Sĩ
Trở lại Tương tự
Thêm lời giải
1 lời giải
Huỳnh Phú Sĩ
12:55 11/01/2020

Chọn phương án C.

$$\begin{align*}\displaystyle\int\limits_{0}^{2} f'\left(x\right)\mathrm{\,d}x&= f\left(x\right)\bigg|_{0}^2=f\left(2\right) - f\left(0\right)=5\\
\Leftrightarrow f\left(2\right)&= 5+f(0)=4.\end{align*}$$