Cho \(f(x),\,g(x)\) là các hàm liên tục trên \(\mathbb{R}\). Chọn khẳng định sai trong các khẳng định sau đây.
| \(\displaystyle\int\limits_{a}^{b} f(x)\cdot g(x)\mathrm{\,d}x= \displaystyle\int\limits_{a}^{b} f(x)\mathrm{\,d}x \cdot\displaystyle\int\limits_{a}^{b} g(x)\mathrm{\,d}x\) | |
| \(\displaystyle\int\limits_{a}^{b} [f(x) + g(x)] \mathrm{\,d}x= \displaystyle \int\limits_{a}^{b} f(x) \mathrm{\,d}x + \displaystyle \int\limits_{a}^{b} g(x) \mathrm{\,d}x\) | |
| \(\displaystyle \int\limits_{a}^{b} f(x) \mathrm{\,d}x = \displaystyle \int\limits_{a}^{c} f(x) \mathrm{\,d}x + \displaystyle \int\limits_{c}^{b} f(x) \mathrm{\,d}x\) \((a< c< b)\) | |
| \(\displaystyle \int\limits_{a}^{b} [f(x) - g(x)] \mathrm{\,d}x= \displaystyle \int\limits_{a}^{b} f(x) \mathrm{\,d}x - \displaystyle \int\limits_{a}^{b} g(x) \mathrm{\,d}x\) |