Có bao nhiêu số nguyên $x$ thoả mãn $\big(7^x-49\big)\big(\log_3^2x-7\log_3x+6\big)< 0$?
| $728$ | |
| $726$ | |
| $725$ | |
| $729$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\left(3^{x^2}-9^x\right)\left[\log_3(x+25)-3\right]\leq0$?
| $24$ | |
| Vô số | |
| $26$ | |
| $25$ |
Có bao nhiêu số nguyên $a$ sao cho ứng với mỗi $a$, tồn tại ít nhất bốn số nguyên $b\in(-12;12)$ thỏa mãn $4^{a^2+b}\leq3^{b-a}+65$?
| $4$ | |
| $6$ | |
| $5$ | |
| $7$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\left(4^x-5\cdot2^{x+2}+64\right)\sqrt{2-\log(4x)}\geq0$?
| $22$ | |
| $25$ | |
| $23$ | |
| $24$ |
Tìm số nghiệm nguyên của bất phương trình $$2^{x+2}+8\cdot2^{-x}-33<0$$
| \(4\) | |
| \(6\) | |
| \(7\) | |
| Vô số |
Cho hai số thực $x,\,y$ bất kì. Khẳng định nào dưới đây đúng?
| $5^x< 5^y\Leftrightarrow x>y$ | |
| $5^x>5^y\Leftrightarrow x>y$ | |
| $5^x>5^y\Leftrightarrow x< y$ | |
| $5^x>5^y\Leftrightarrow x=y$ |
Tập nghiệm của bất phương trình $3^x>5$ là
| $\big(0;\log_35\big)$ | |
| $\big(\log_53;+\infty\big)$ | |
| $\big(\log_35;+\infty\big)$ | |
| $\big(0;\log_53\big)$ |
Có bao nhiêu số nguyên $y\in(-2022;2022]$ để bất phương trình $2+\log_{\sqrt{3}}(y-1)\leq\log_{\sqrt{3}}\big[x^2-2(3+y)x+2y^2+24\big]$ nghiệm đúng với mọi $x\in\mathbb{R}$?
| $2011$ | |
| $2021$ | |
| $2019$ | |
| $4041$ |
Số nghiệm nguyên của bất phương trình $\log_4(2x+3)< 2$ là
| $7$ | |
| $8$ | |
| $9$ | |
| $10$ |
Tập nghiệm của bất phương trình $3^x\leq81$ là
| $(-\infty;4]$ | |
| $[4;+\infty)$ | |
| $(4;+\infty)$ | |
| $(-\infty;4)$ |
Tập nghiệm của bất phương trình $2^{2x}< 8$ là
| $\left(-\infty;\dfrac{3}{2}\right)$ | |
| $\left(\dfrac{3}{2};+\infty\right)$ | |
| $(-\infty;2)$ | |
| $\left(0;\dfrac{3}{2}\right)$ |
Có bao nhiêu số nguyên dương $x$ sao cho tồn tại số thực $y$ lớn hơn $1$ thỏa mãn $\big(xy^2+x-2y-1)\log y=\log\dfrac{2y-x+3}{x}$?
| $3$ | |
| $1$ | |
| Vô số | |
| $2$ |
Tập nghiệm bất phương trình $2^{x^2-3x}< 16$ là
| $(4;+\infty)$ | |
| $(-\infty;-1)\cup(4;+\infty)$ | |
| $(-1;4)$ | |
| $(-\infty;-1)$ |
Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $\log_3\big(x^2+y^2+x\big)+\log_2\big(x^2+y^2\big)\leq\log_3x+\log_2\big(x^2+y^2+24x\big)?$
| $89$ | |
| $48$ | |
| $90$ | |
| $49$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\log_3\dfrac{x^2-16}{343}< \log_7\dfrac{x^2-16}{27}$?
| $193$ | |
| $92$ | |
| $186$ | |
| $184$ |
Tập nghiệm của bất phương trình $2^{x+1}< 4$ là
| $(-\infty;1]$ | |
| $(1;+\infty)$ | |
| $[1;+\infty)$ | |
| $(-\infty;1)$ |
Cho hai số thực $x,\,y$ bất kì. Khẳng định nào dưới đây đúng?
| $5^x< 5^y\Leftrightarrow x>y$ | |
| $5^x>5^y\Leftrightarrow x>y$ | |
| $5^x>5^y\Leftrightarrow x< y$ | |
| $5^x>5^y\Leftrightarrow x=y$ |
Xét tất cả các số thực $x,\,y$ sao cho $a^{4x-\log_5a^2}\leq25^{40-y^2}$ với mọi số thực dương $a$. Giá trị lớn nhất của biểu thức $P=x^2+y^2+x-3y$ bằng
| $\dfrac{125}{2}$ | |
| $80$ | |
| $60$ | |
| $20$ |
Có bao nhiêu số nguyên dương $a$ sao cho ứng với mỗi số $a$ có đúng ba số nguyên $b$ thỏa mãn $\big(3^b-3\big)\big(a\cdot2^b-18\big)< 0$?
| $72$ | |
| $73$ | |
| $71$ | |
| $74$ |
Ông A dự định gửi vào ngân hàng một số tiền với lãi suất $7,5\%$ một năm, để sau $5$ năm, số tiền lãi đủ mua một chiếc xe máy trị giá $85$ triệu đồng. Biết rằng, cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Hỏi số tiền ông A cần gửi cho ngân hàng gần nhất với số tiền nào dưới đây?
| $60$ triệu đồng | |
| $189$ triệu đồng | |
| $196$ triệu đồng | |
| $210$ triệu đồng |