Có bao nhiêu giá trị nguyên của tham số $m\in(-10;100)$ để tồn tại các số thực dương $a,\,b,\,x,\,y$ thỏa mãn $a\neq1$, $b\neq1$ và $a^{2x}=b^y=(ab)^{x+my}$?
| $0$ | |
| $100$ | |
| $99$ | |
| $98$ |
Có bao nhiêu số nguyên $a\in(1;2022]$ sao cho tồn tại số thực $x$ thỏa mãn $\left(a^{\log_3x}-1\right)^{\log_3a}=x+1$?
| $2018$ | |
| $2019$ | |
| $2020$ | |
| $1$ |
Có bao nhiêu số nguyên $y$ sao cho tồn tại $x\in\left(\dfrac{1}{3};3\right)$ thỏa mãn $27^{3x^2+xy}=(1+xy)\cdot27^{9x}$?
| $27$ | |
| $9$ | |
| $11$ | |
| $12$ |
Có bao nhiêu số nguyên $y$ sao cho tồn tại số thực $x$ thỏa mãn $\log_2\left(4444+4x-2x^2\right)=2\cdot2^{y^2}+y^2+x^2-2x-2220$?
| $13$ | |
| $9$ | |
| $11$ | |
| $7$ |
Gọi $S$ là tập hợp các giá trị nguyên của $y$ sao cho ứng với mỗi $y$, tồn tại duy nhất một giá trị $x\in\left[\dfrac{3}{2};\dfrac{9}{2}\right]$ thỏa mãn $\log_3\big(x^3-6x^2+9x+y\big)=\log_2\big(-x^2+6x-5\big)$. Số phần tử của $S$ là
| $7$ | |
| $1$ | |
| $8$ | |
| $3$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là
| $2020$ | |
| $2019$ | |
| $2021$ | |
| $2022$ |
Có bao nhiêu số thực $x$ thỏa mãn $9^{\log_3x}=4$?
| $4$ | |
| $0$ | |
| $2$ | |
| $1$ |
Phương trình \(2^{x-2}=3^{x^2+2x-8}\) có một nghiệm dạng \(x=\log_ab-4\) với \(a,\,b\) là các số nguyên dương thuộc khoảng \((1;5)\). Khi đó, \(a+2b\) bằng
| \(6\) | |
| \(9\) | |
| \(14\) | |
| \(7\) |
Cho \(x,\,y\) là các số thực dương thỏa mãn $$\log_9x=\log_6y=\log_4\left(2x+y\right)$$Giá trị của \(\dfrac{x}{y}\) bằng
| \(2\) | |
| \(\dfrac{1}{2}\) | |
| \(\log_2\left(\dfrac{3}{2}\right)\) | |
| \(\log_{\tfrac{3}{2}}2\) |
Tính tổng các nghiệm của phương trình $$\log_6\left(3\cdot4^x+2\cdot9^x\right)=x+1$$
| \(2\) | |
| \(1\) | |
| \(0\) | |
| \(3\) |
Tính tổng các nghiệm của phương trình $$\log_5\left(6-5^x\right)=1-x$$
| \(1\) | |
| \(0\) | |
| \(3\) | |
| \(2\) |
Phương trình \(\left(\sqrt{5}\right)^{x^2+4x+6}=\log_2{128}\) có bao nhiêu nghiệm?
| \(1\) | |
| \(3\) | |
| \(2\) | |
| \(0\) |
Tìm tập nghiệm của phương trình $$4^{x+1}+4^{x-1}=272$$
| \(\{3;2\}\) | |
| \(\{2\}\) | |
| \(\{3\}\) | |
| \(\{3;5\}\) |
Phương trình \(3^x=2\) có nghiệm là
| \(x=\log_23\) | |
| \(x=2^3\) | |
| \(x=\log_32\) | |
| \(x=\dfrac{2}{3}\) |
Có bao nhiêu cặp số nguyên $(x,y)$ với $y\in\big[0;2021^3\big]$ thỏa mãn phương trình $\log_4\left(x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}\right)=\log_2(y-x)$?
| $90854$ | |
| $90855$ | |
| $2021^2$ | |
| $2021^2-1$ |
Có bao nhiêu số nguyên $x$ sao cho tồn tại duy nhất số thực $y$ thỏa mãn $\log_3\big(2+x+2xy-x^2\big)=\log_{\sqrt{3}}y$?
| $5$ | |
| $3$ | |
| $4$ | |
| $2$ |
Có bao nhiêu số nguyên $m$ để phương trình $$\log_{\sqrt{2}}\big(mx-6x^3\big)+2\log_{\tfrac{1}{2}}\big(-14x^2+29x-2\big)=0$$có nghiệm thực duy nhất.
| $18$ | |
| Vô số | |
| $22$ | |
| $23$ |
Có bao nhiêu số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn $$\log_3\left(x+y\right)=\log_4\left(x^2+y^2\right)?$$
| \(3\) | |
| \(2\) | |
| \(1\) | |
| Vô số |
Có bao nhiêu cặp số nguyên \((x;y)\) thỏa mãn \(0\leq x\leq2020\) và \(\log_3(3x+3)+x=2y+9^y\)?
| \(2019\) | |
| \(6\) | |
| \(2020\) | |
| \(4\) |
Phương trình $3^{2x}-(m+1)3^x+m=0$ có đúng một nghiệm khi
| $m=0$ | |
| $m>0$ | |
| $m>0$, $m\neq1$ | |
| $m=1$ hoặc $m\leq0$ |