Điểm nào sau đây thuộc đồ thị hàm số $y=2|x-1|+3|x|-2$?
| $A(2;6)$ | |
| $B(1;-1)$ | |
| $C(-2;-10)$ | |
| Cả ba điểm $A,\,B,\,C$ |
Cho hàm số $f(x)=|-5x|$. Khẳng định nào sau đây là sai?
| $f(-1)=5$ | |
| $f(2)=10$ | |
| $f(-2)=10$ | |
| $f\left(\dfrac{1}{5}\right)=-1$ |
Biết đồ thị của hàm số $f(x)=ax^3+bx^2+cx+d$ có hai điểm cực trị là $A(1;1)$ và $B\left(2;\dfrac{4}{3}\right)$. Tính $f(-1)$.
| $12$ | |
| $7$ | |
| $\dfrac{31}{3}$ | |
| $\dfrac{16}{3}$ |
Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\big|3x^4-4x^3-12x^2+m\big|$ có $7$ điểm cực trị?
| $4$ | |
| $6$ | |
| $3$ | |
| $5$ |
Cho hàm số $y=\big(2x^2-1\big)^{\tfrac{1}{2}}$. Giá trị của hàm số đã cho tại điểm $x=2$ bằng
| $3$ | |
| $\sqrt{7}$ | |
| $\sqrt{3}$ | |
| $7$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
| $21$ | |
| $10$ | |
| $8$ | |
| $2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
| $12$ | |
| $11$ | |
| $6$ | |
| $5$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
| $3$ | |
| $4$ | |
| $1$ | |
| $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.

Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
| $6$ | |
| $3$ | |
| $4$ | |
| $5$ |
Cho hàm số $f(x)=\big(1-\sqrt[4]{x}\big)\big(1+\sqrt[4]{x}\big)\big(1+\sqrt{x}\big)(1+x)$. Tính $f\left(\dfrac{1}{2^{64}}\right)$.
| $1-\dfrac{1}{2^{128}}$ | |
| $1+\dfrac{1}{2^{64}}$ | |
| $1+\dfrac{1}{2^{128}}$ | |
| $1-\dfrac{1}{2^{64}}$ |
Biết đồ thị của hàm số $f(x)=ax^3+bx^2+cx+d$ có hai điểm cực trị là $A(1;1)$ và $B\left(2;\dfrac{4}{3}\right)$. Tính $f(-1)$.
| $12$ | |
| $7$ | |
| $\dfrac{31}{3}$ | |
| $\dfrac{16}{3}$ |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\big|x^4-2mx^2+64x\big|$ có đúng ba điểm cực trị?
| $5$ | |
| $6$ | |
| $12$ | |
| $11$ |
Cho hàm số $f(x)=\left|x^4-4x^3+4x^2+a\right|$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn $[0;2]$. Có bao nhiêu số nguyên $a$ thuộc đoạn $[-3;2]$ sao cho $M\leq2m$?
| $7$ | |
| $5$ | |
| $6$ | |
| $4$ |
Cho hàm số bậc hai $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^3-2x^2+x\big)\big|=2$.
| $1$ | |
| $3$ | |
| $4$ | |
| $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^2-4x\big)\big|=\dfrac{3}{4}$.
| $12$ | |
| $6$ | |
| $10$ | |
| $8$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^3-3x\big)\big|=2$.
| $12$ | |
| $6$ | |
| $10$ | |
| $8$ |
Cho hàm số bậc bốn $y=f(x)$ thỏa mãn $f(0)=0$. Hàm số $y=f'(x)$ có đồ thị như hình vẽ.
Hàm số $g(x)=\left|2f\big(x^2+x\big)-x^4-2x^3+x^2+2x\right|$ có bao nhiêu cực trị?
| $4$ | |
| $5$ | |
| $6$ | |
| $7$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x-7)\left(x^2-9\right)$, $\forall x\in\mathbb{R}$. Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)=f\left(\left|x^3+5x\right|+m\right)$ có ít nhất $3$ điểm cực trị?
| $6$ | |
| $7$ | |
| $5$ | |
| $4$ |
Cho hàm số $f(x)=\begin{cases}2x+5 &\text{khi }x\ge1\\ 3x^2+4 &\text{khi }x< 1\end{cases}$. Giả sử $F$ là nguyên hàm của $f$ trên $\mathbb{R}$ thỏa mãn $F(0)=2$. Giá trị của $F(-1)+2F(2)$ bằng
| $27$ | |
| $29$ | |
| $12$ | |
| $33$ |
Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng
| $13$ | |
| $18$ | |
| $5$ | |
| $8$ |