Điểm nào sau đây không thuộc đồ thị hàm số $y=\dfrac{\sqrt{x^2-4x+4}}{x}$?
| $A(2;0)$ | |
| $B\left(3;\dfrac{1}{3}\right)$ | |
| $C(1;-1)$ | |
| $D(-1;-3)$ |
Điểm nào sau đây không thuộc đồ thị hàm số $y=x^4-2x^2-1$?
| $A(-1;2)$ | |
| $B(2;7)$ | |
| $C(0;-1)$ | |
| $D(1;-2)$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
| $3$ | |
| $4$ | |
| $1$ | |
| $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.

Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
| $6$ | |
| $3$ | |
| $4$ | |
| $5$ |
Cho hàm số bậc hai $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^3-2x^2+x\big)\big|=2$.
| $1$ | |
| $3$ | |
| $4$ | |
| $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^2-4x\big)\big|=\dfrac{3}{4}$.
| $12$ | |
| $6$ | |
| $10$ | |
| $8$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^3-3x\big)\big|=2$.
| $12$ | |
| $6$ | |
| $10$ | |
| $8$ |
Cho hàm số bậc bốn $y=f(x)$ thỏa mãn $f(0)=0$. Hàm số $y=f'(x)$ có đồ thị như hình vẽ.
Hàm số $g(x)=\left|2f\big(x^2+x\big)-x^4-2x^3+x^2+2x\right|$ có bao nhiêu cực trị?
| $4$ | |
| $5$ | |
| $6$ | |
| $7$ |
Cho hàm số $f(x)=|-5x|$. Khẳng định nào sau đây là sai?
| $f(-1)=5$ | |
| $f(2)=10$ | |
| $f(-2)=10$ | |
| $f\left(\dfrac{1}{5}\right)=-1$ |
Cho hàm số $f\left(x\right)=\left|-5x\right|$. Chọn mệnh đề sai?
| $f\left(-1\right)=5$ | |
| $f\left(2\right)=10$ | |
| $f\left(-2\right)=10$ | |
| $f\left(\dfrac{1}{5}\right)=-1$ |
Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.

Hỏi đồ thị hàm số \(y=\left|f\left(|x|\right)\right|\) có tất cả bao nhiêu điểm cực trị?
| \(9\) | |
| \(7\) | |
| \(6\) | |
| \(8\) |
Cho hàm số \(y=f(x)\) có đồ thị hàm số \(y=f\left(|x|\right)\) như hình vẽ.

Hãy chọn kết luận đúng.
| \(f(x)=-x^3-x^2+4x+4\) | |
| \(f(x)=x^3+x^2-4x-4\) | |
| \(f(x)=x^3-x^2-4x+4\) | |
| \(f(x)=-x^3+x^2+4x-4\) |

Đồ thị như hình trên là của hàm số nào sau đây?
| \(y=x^4-2x^2+2\) | |
| \(y=2\left(x^2-1\right)^2\) | |
| \(y=|x|^3-3|x|+2\) | |
| \(y=x^2-2|x|^2+2\) |

Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm \(\max\limits_{[-2;4]}\left|f(x)\right|\).
| \(\left|f(0)\right|\) | |
| \(2\) | |
| \(3\) | |
| \(1\) |
Mệnh đề nào sau đây là sai?
| Đồ thị hàm số \(y=\left|\sin x\right|\) đối xứng qua gốc tọa độ \(O\) | |
| Đồ thị hàm số \(y=\cos x\) đối xứng qua trục \(Oy\) | |
| Đồ thị hàm số \(y=\left|\tan x\right|\) đối xứng qua trục \(Oy\) | |
| Đồ thị hàm số \(y=\tan x\) đối xứng qua gốc tọa độ \(O\) |
Hàm số nào sau đây có đồ thị đối xứng qua gốc tọa độ?
| \(y=\cot4x\) | |
| \(y=\dfrac{\sin x+1}{\cos x}\) | |
| \(y=\tan^2x\) | |
| \(y=\left|\cot x\right|\) |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.

Kết luận nào sau đây đúng?
| $ad>0$, $bc< 0$ | |
| $ad< 0$, $bc>0$ | |
| $ad< 0$, $bc< 0$ | |
| $ad>0$, $bc>0$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.

Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?
| $3$ | |
| $2$ | |
| $4$ | |
| $5$ |
Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số dưới đây.

Hãy xác định hàm số đó.
| $y=-x^4-4x^2+1$ | |
| $y=x^3-3x+1$ | |
| $y=-x^3+3x-1$ | |
| $y=x^3+3x+1$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?

| $y=-x^3+3x+1$ | |
| $y=\dfrac{x-1}{x+1}$ | |
| $y=\dfrac{x+1}{x-1}$ | |
| $y=x^4-x^2+1$ |