Số giao điểm của đồ thị hàm số \(y=x^3+3x^2\) và đồ thị hàm số \(y=3x^2+3x\) là
| \(3\) | |
| \(1\) | |
| \(2\) | |
| \(0\) |
Tìm các giá trị của tham số \(m\) để đường cong \(\left(\mathscr{C}\right)\colon y=x^3-3x+m\) cắt trục hoành tại \(3\) điểm phân biệt.
| \(m\in(2;+\infty)\) | |
| \(m\in(-2;2)\) | |
| \(m\in\mathbb{R}\) | |
| \(m\in(-\infty;-2)\) |
Tìm các giá trị của tham số \(m\) để phương trình \(x^3-12x+m-2=0\) có \(3\) nghiệm phân biệt.
| \(m\in[-14;18]\) | |
| \(m\in(-14;18)\) | |
| \(m\in(-18;14)\) | |
| \(\left[\begin{array}{l}m<-14\\ m>18\end{array}\right.\) |
Số giao điểm của đường cong \(y=x^3-2x^2+2x+1\) và đường thẳng \(y=1-x\) bằng
| \(0\) | |
| \(2\) | |
| \(1\) | |
| \(3\) |
Số giao điểm của đồ thị hàm số \(y=-2x^3-3x^2+1\) với trục hoành là
| \(1\) | |
| \(0\) | |
| \(3\) | |
| \(2\) |
Cho hàm số bậc ba \(y=f\left(x\right)\) có đồ thị là đường cong trong hình.

Số nghiệm thực của phương trình \(f\left(x\right)=-1\) là
| \(3\) | |
| \(1\) | |
| \(0\) | |
| \(2\) |
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=x^3-x\) và đồ thị hàm số \(y=x-x^2\).
| \(\dfrac{37}{12}\) | |
| \(\dfrac{27}{4}\) | |
| \(13\) | |
| \(\dfrac{9}{4}\) |
Số giao điểm của đồ thị hàm số \(y=x^3-3x+1\) và trục hoành là
| \(3\) | |
| \(0\) | |
| \(2\) | |
| \(1\) |
Tập hợp các tham số thực \(m\) để đồ thị của hàm số \(y=x^3+(m-4)x+2m\) cắt trục hoành tại ba điểm phân biệt là
| \((-\infty;1]\setminus\{-8\}\) | |
| \((-\infty;1)\setminus\{-8\}\) | |
| \((-\infty;1]\) | |
| \((-\infty;1)\) |

Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình trên. Số nghiệm thực của phương trình \(f(x)=1\) bằng
| \(2\) | |
| \(3\) | |
| \(1\) | |
| \(0\) |
Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?
| $y=x^3-3x+3$ | |
| $y=x^3+3x+1$ | |
| $y=-x^3+3x+5$ | |
| $y=x^3-3x+1$ |
Hàm số nào dưới đây có bảng biến thiên như sau?

| $y=\dfrac{x+2}{x}$ | |
| $y=-x^3+3x+1$ | |
| $y=x^4-3x^2$ | |
| $y=-2x^2+1$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình $f(x)=2$ là
| $1$ | |
| $0$ | |
| $2$ | |
| $3$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số $m$ để phương trình $f(x)=m$ có ba nghiệm thực phân biệt?
| $2$ | |
| $5$ | |
| $3$ | |
| $4$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.

Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
| $6$ | |
| $3$ | |
| $4$ | |
| $5$ |
Trong các hàm số sau, hàm số nào không có cực trị?
| $y=x^2$ | |
| $y=\dfrac{x+2}{2x-1}$ | |
| $y=x^4+2x^2+2$ | |
| $y=-x^3-x^2$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:

Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là
| $5$ | |
| $3$ | |
| $6$ | |
| $4$ |
Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?
| $y=x^3-3x+3$ | |
| $y=x^3+3x+1$ | |
| $y=-x^3+3x+5$ | |
| $y=x^3-3x+1$ |
Cho hàm số $f(x)=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình $f(x)=1$ là
| $1$ | |
| $2$ | |
| $4$ | |
| $3$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{-1\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên.

Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho phương trình $f(x)=m$ có đúng ba nghiệm thực phân biệt.
| $(-4;2)$ | |
| $[-4;2)$ | |
| $(-4;2]$ | |
| $(-\infty;2]$ |