
Cho hàm số \(y=f\left(x\right)\) có đồ thị trong hình vẽ trên. Số nghiệm của phương trình \(f\left(x\right)=-1\) là
| \(3\) | |
| \(2\) | |
| \(1\) | |
| \(4\) |
Cho hàm số $f(x)=ax^4+bx^2+c$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số nghiệm của phương trình $f(x)-1=0$ là
| $2$ | |
| $1$ | |
| $4$ | |
| $3$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình $f(x)=2$ là
| $1$ | |
| $0$ | |
| $2$ | |
| $3$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.

Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
| $6$ | |
| $3$ | |
| $4$ | |
| $5$ |
Cho hàm số bậc hai $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^3-2x^2+x\big)\big|=2$.
| $1$ | |
| $3$ | |
| $4$ | |
| $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^2-4x\big)\big|=\dfrac{3}{4}$.
| $12$ | |
| $6$ | |
| $10$ | |
| $8$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^3-3x\big)\big|=2$.
| $12$ | |
| $6$ | |
| $10$ | |
| $8$ |
Cho hàm số bậc bốn $f(x)=ax^4+bx^3+cx^2+dx+e$ có đồ thị như hình vẽ.
Số nghiệm của phương trình $f\big(f(x)\big)+1=0$ là
| $3$ | |
| $5$ | |
| $4$ | |
| $6$ |
Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
| $5$ | |
| $4$ | |
| $6$ | |
| $7$ |
Cho hàm số bậc ba \(y=f(x)\) có đồ thị là đường cong trong hình.

Số nghiệm thực phân biệt của phương trình \(f\left(x^3f(x)\right)+1=0\) là
| \(8\) | |
| \(5\) | |
| \(6\) | |
| \(4\) |
Cho hàm số bậc ba \(y=f\left(x\right)\) có đồ thị là đường cong trong hình.

Số nghiệm thực của phương trình \(f\left(x\right)=-1\) là
| \(3\) | |
| \(1\) | |
| \(0\) | |
| \(2\) |

Đường cong ở hình trên là đồ thị của hàm số \(f(x)=ax^4+bx^2+c\); với \(x\) là biến số thực; \(a,\,b,\,c\) là ba hằng số thực, \(a\neq0\). Gọi \(k\) là số nghiệm thực của phương trình \(f(x)=1\). Mệnh đề nào dưới đây đúng?
| \(abc<0\) và \(k=2\) | |
| \(abc>0\) và \(k=3\) | |
| \(abc<0\) và \(k=0\) | |
| \(abc>0\) và \(k=2\) |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.

Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?
| $3$ | |
| $2$ | |
| $4$ | |
| $5$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?

| $y=-x^3+3x+1$ | |
| $y=\dfrac{x-1}{x+1}$ | |
| $y=\dfrac{x+1}{x-1}$ | |
| $y=x^4-x^2+1$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong như hình vẽ.

Tọa độ giao điểm của đồ thị đã cho và trục tung là
| $(4;0)$ | |
| $(0;4)$ | |
| $(0;3)$ | |
| $(3;0)$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong trong hình bên.

Giá trị của tham số $m$ để phương trình $f(x)+1=m$ có ba nghiệm phân biệt là
| $0< m< 4$ | |
| $1< m< 5$ | |
| $-1< m< 4$ | |
| $0< m< 5$ |
Hàm số nào sau đây có đồ thị như đường cong trong hình bên dưới?

| $y=-x^4+3x^2-1$ | |
| $y=x^4-3x^2-1$ | |
| $y=x^3-x^2-1$ | |
| $y=-x^3+x^2-1$ |
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?

| $y=-x^4+2x^2-3$ | |
| $y=-x^3+3x$ | |
| $y=x^4-2x^2-3$ | |
| $y=x^3-3x-3$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số $m$ để phương trình $f(x)=m$ có ba nghiệm thực phân biệt?
| $2$ | |
| $5$ | |
| $3$ | |
| $4$ |
Cho hàm số $y=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.

Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
| $(-1;2)$ | |
| $(0;1)$ | |
| $(1;2)$ | |
| $(1;0)$ |