Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.

Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?
| $3$ | |
| $2$ | |
| $4$ | |
| $5$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là
| $2020$ | |
| $2019$ | |
| $2021$ | |
| $2022$ |
Đồ thị sau đây là của hàm số \(y=x^3-3x+1\).

Với giá trị nào của \(m\) thì phương trình \(x^3-3x-m=0\) có \(3\) nghiệm phân biệt?
| \(-2< m<2\) | |
| \(-2< m<3\) | |
| \(-1< m<3\) | |
| \(-2\leq m<2\) |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
| $3$ | |
| $4$ | |
| $1$ | |
| $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực phân biệt của phương trình $f\big(f(x)\big)=1$ là
| $9$ | |
| $3$ | |
| $6$ | |
| $7$ |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f(x)-2-m=0\) có \(3\) nghiệm phân biệt?
| \(5\) | |
| \(4\) | |
| \(3\) | |
| \(2\) |
Cho hàm số \(y=ax^3+bx^2+cx+d\) (\(a,\,b,\,c,\,d\in\mathbb{R}\)) có đồ thị là đường cong trong hình.

Có bao nhiêu số dương trong các số \(a\), \(b\), \(c\), \(d\)?
| \(4\) | |
| \(1\) | |
| \(2\) | |
| \(3\) |
Cho hàm số bậc ba \(y=f\left(x\right)\) có đồ thị là đường cong trong hình.

Số nghiệm thực của phương trình \(f\left(x\right)=-1\) là
| \(3\) | |
| \(1\) | |
| \(0\) | |
| \(2\) |
Biết hàm số \(f(x)=\dfrac{a}{b^2\cdot3^x}\) có đồ thị đối xứng với đồ thị hàm số \(y=3^x\) qua đường thẳng \(x=-1\). Biết \(a,\,b\) là các số nguyên.

Chọn khẳng định đúng trong các khẳng định sau:
| \(b^2=9a\) | |
| \(b^2=4a\) | |
| \(b^2=6a\) | |
| \(b^2=a\) |
Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số dưới đây.

Hãy xác định hàm số đó.
| $y=-x^4-4x^2+1$ | |
| $y=x^3-3x+1$ | |
| $y=-x^3+3x-1$ | |
| $y=x^3+3x+1$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?

| $y=-x^3+3x+1$ | |
| $y=\dfrac{x-1}{x+1}$ | |
| $y=\dfrac{x+1}{x-1}$ | |
| $y=x^4-x^2+1$ |
Cho hàm số $y=f(x)$ là hàm đa thức bậc ba và có đồ thị như hình vẽ.

Khẳng định nào sau đây là sai?
| Hàm số đồng biến trên $(1;+\infty)$ | |
| Hàm số đồng biến trên $(-\infty;-1)\cup(1;+\infty)$ | |
| Hàm số đồng biến trên $(-\infty;-1)$ | |
| Hàm số nghịch biến trên $(-1;1)$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong như hình vẽ.

Tọa độ giao điểm của đồ thị đã cho và trục tung là
| $(4;0)$ | |
| $(0;4)$ | |
| $(0;3)$ | |
| $(3;0)$ |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
| $8$ | |
| $9$ | |
| $7$ | |
| $6$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là
| $4$ | |
| $6$ | |
| $5$ | |
| $7$ |
Cho hàm số $f(x)=ax^4+bx^2+c$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số nghiệm của phương trình $f(x)-1=0$ là
| $2$ | |
| $1$ | |
| $4$ | |
| $3$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong trong hình bên.

Giá trị của tham số $m$ để phương trình $f(x)+1=m$ có ba nghiệm phân biệt là
| $0< m< 4$ | |
| $1< m< 5$ | |
| $-1< m< 4$ | |
| $0< m< 5$ |
Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, hàm số $y=-x^3+3x^2-3mx+\dfrac{5}{3}$ có đúng một cực trị thuộc khoảng $(-2;5)$?
| $16$ | |
| $6$ | |
| $17$ | |
| $7$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình $f(x)=2$ là
| $1$ | |
| $0$ | |
| $2$ | |
| $3$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
| $21$ | |
| $10$ | |
| $8$ | |
| $2$ |