Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là
| $2020$ | |
| $2019$ | |
| $2021$ | |
| $2022$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số $m$ để phương trình $f(x)=m$ có ba nghiệm thực phân biệt?
| $2$ | |
| $5$ | |
| $3$ | |
| $4$ |
Tìm các giá trị của tham số \(m\) để phương trình \(x^3-12x+m-2=0\) có \(3\) nghiệm phân biệt.
| \(m\in[-14;18]\) | |
| \(m\in(-14;18)\) | |
| \(m\in(-18;14)\) | |
| \(\left[\begin{array}{l}m<-14\\ m>18\end{array}\right.\) |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.

Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?
| $3$ | |
| $2$ | |
| $4$ | |
| $5$ |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f(x)-2-m=0\) có \(3\) nghiệm phân biệt?
| \(5\) | |
| \(4\) | |
| \(3\) | |
| \(2\) |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f(x)-1=m\) có đúng \(2\) nghiệm.
| \(-2< m<-1\) | |
| \(m=-2\) hoặc \(m\geq-1\) | |
| \(m=-1\) hoặc \(m>0\) | |
| \(m=-2\) hoặc \(m>-1\) |
Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\setminus\{0\}\), liên tục trên từng khoảng xác định và có bảng biến thiên như hình.

Tìm tập hợp các giá trị thực của tham số \(m\) để phương trình \(f(x)=m\) có \(3\) nghiệm phân biệt.
| \([-2;2)\) | |
| \((-2;2)\) | |
| \((-2;2]\) | |
| \([2;+\infty)\) |
Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\setminus\{0\}\), liên tục trên từng khoảng xác định và có bảng biến thiên như hình.

Phương trình \(f(x)=m\) với \(m\in(-1;2)\) có bao nhiêu nghiệm?
| \(3\) | |
| \(1\) | |
| \(0\) | |
| \(2\) |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tập hợp các giá trị thực của tham số \(m\) để phương trình \(f(x)=m\) có đúng một nghiệm là
| \((-\infty;-2)\cup(2;+\infty)\) | |
| \((-\infty;-2]\cup[2;+\infty)\) | |
| \((-2;2)\) | |
| \([-2;2]\) |
Cho hàm số \(y=ax^3+bx^2+cx+d\) (\(a,\,b,\,c,\,d\in\mathbb{R}\)) có đồ thị là đường cong trong hình.

Có bao nhiêu số dương trong các số \(a\), \(b\), \(c\), \(d\)?
| \(4\) | |
| \(1\) | |
| \(2\) | |
| \(3\) |
Cho hàm số bậc ba \(y=f\left(x\right)\) có đồ thị là đường cong trong hình.

Số nghiệm thực của phương trình \(f\left(x\right)=-1\) là
| \(3\) | |
| \(1\) | |
| \(0\) | |
| \(2\) |
Biết hàm số \(f(x)=\dfrac{a}{b^2\cdot3^x}\) có đồ thị đối xứng với đồ thị hàm số \(y=3^x\) qua đường thẳng \(x=-1\). Biết \(a,\,b\) là các số nguyên.

Chọn khẳng định đúng trong các khẳng định sau:
| \(b^2=9a\) | |
| \(b^2=4a\) | |
| \(b^2=6a\) | |
| \(b^2=a\) |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
| $3$ | |
| $4$ | |
| $1$ | |
| $2$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{0\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên.

Tập hợp tất cả các giá trị của tham số $m$ sao cho phương trình $f(x)=m$ có ba nghiệm phân biệt là
| $(-\infty;2)$ | |
| $\{-1;2\}$ | |
| $[-1;2]$ | |
| $(-1;2)$ |
Cho hàm số $y=ax^4+bx^2+c$ có đồ thị như hình vẽ bên.

Mệnh đề nào dưới đây đúng?
| $a>0,\,b< 0,\,c< 0$ | |
| $a< 0,\,b< 0,\,c< 0$ | |
| $a< 0,\,b>0,\,c< 0$ | |
| $a>0,\,b< 0,\,c>0$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.

Tìm $m$ để hàm số $g(x)=f\big(x^2+m\big)$ có $3$ điểm cực trị.
| $m\in(-\infty;0]$ | |
| $m\in(3;+\infty)$ | |
| $m\in[0;3)$ | |
| $m\in(0;3)$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.

Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)=f\big(x^2-8x+m\big)$ có $5$ điểm cực trị.
| $15$ | |
| $16$ | |
| $17$ | |
| $18$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực phân biệt của phương trình $f\big(f(x)\big)=1$ là
| $9$ | |
| $3$ | |
| $6$ | |
| $7$ |
Tìm các giá trị của tham số \(m\) để đường cong \(\left(\mathscr{C}\right)\colon y=x^3-3x+m\) cắt trục hoành tại \(3\) điểm phân biệt.
| \(m\in(2;+\infty)\) | |
| \(m\in(-2;2)\) | |
| \(m\in\mathbb{R}\) | |
| \(m\in(-\infty;-2)\) |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f(x)-m=0\) có \(3\) nghiệm phân biệt.
| \(-3\leq m\leq2\) | |
| \(-3< m<2\) | |
| \(-4\leq m\leq2\) | |
| \(-4< m<2\) |