Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.
| $32$ | |
| $29$ | |
| $25$ | |
| $46$ |
Xét các số thực $x,\,y$ thỏa mãn $x^2+y^2>1$ và $\log_{x^2+y^2}(2x+4y)\geq1$. Giá trị lớn nhất của biểu thức $P=3x+y$ bằng
| $5+2\sqrt{10}$ | |
| $5+4\sqrt{5}$ | |
| $5+5\sqrt{2}$ | |
| $10+2\sqrt{5}$ |
Có bao nhiêu số nguyên $y\in(-2022;2022]$ để bất phương trình $2+\log_{\sqrt{3}}(y-1)\leq\log_{\sqrt{3}}\big[x^2-2(3+y)x+2y^2+24\big]$ nghiệm đúng với mọi $x\in\mathbb{R}$?
| $2011$ | |
| $2021$ | |
| $2019$ | |
| $4041$ |
Số nghiệm nguyên của bất phương trình $\log_4(2x+3)< 2$ là
| $7$ | |
| $8$ | |
| $9$ | |
| $10$ |
Có bao nhiêu số nguyên $x$ thoả mãn $\big(7^x-49\big)\big(\log_3^2x-7\log_3x+6\big)< 0$?
| $728$ | |
| $726$ | |
| $725$ | |
| $729$ |
Tập nghiệm của bất phương trình $\log_3(2x)\ge\log_32$ là
| $(0;+\infty)$ | |
| $[1;+\infty)$ | |
| $(1;+\infty)$ | |
| $(0;1]$ |
Có bao nhiêu số nguyên dương $x$ sao cho tồn tại số thực $y$ lớn hơn $1$ thỏa mãn $\big(xy^2+x-2y-1)\log y=\log\dfrac{2y-x+3}{x}$?
| $3$ | |
| $1$ | |
| Vô số | |
| $2$ |
Tập nghiệm của bất phương trình $\log_3(x-2)\le2$ là
| $S=(-\infty;11]$ | |
| $S=(2;11]$ | |
| $S=(2;8]$ | |
| $S=(-\infty;8]$ |
Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $\log_3\big(x^2+y^2+x\big)+\log_2\big(x^2+y^2\big)\leq\log_3x+\log_2\big(x^2+y^2+24x\big)?$
| $89$ | |
| $48$ | |
| $90$ | |
| $49$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\log_3\dfrac{x^2-16}{343}< \log_7\dfrac{x^2-16}{27}$?
| $193$ | |
| $92$ | |
| $186$ | |
| $184$ |
Tập nghiệm của bất phương trình $\log(x-2)>0$ là
| $(2;3)$ | |
| $(-\infty;3)$ | |
| $(3;+\infty)$ | |
| $(12;+\infty)$ |
Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.
| $32$ | |
| $29$ | |
| $25$ | |
| $46$ |
Tập nghiệm của bất phương trình $3^x>5$ là
| $\big(0;\log_35\big)$ | |
| $\big(\log_53;+\infty\big)$ | |
| $\big(\log_35;+\infty\big)$ | |
| $\big(0;\log_53\big)$ |
Xét tất cả các số thực $x,\,y$ sao cho $a^{4x-\log_5a^2}\leq25^{40-y^2}$ với mọi số thực dương $a$. Giá trị lớn nhất của biểu thức $P=x^2+y^2+x-3y$ bằng
| $\dfrac{125}{2}$ | |
| $80$ | |
| $60$ | |
| $20$ |
Tập nghiệm của bất phương trình $\log_5(x+1)>2$ là
| $(9;+\infty)$ | |
| $(25;+\infty)$ | |
| $(31;+\infty)$ | |
| $(24;+\infty)$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\left(3^{x^2}-9^x\right)\left[\log_3(x+25)-3\right]\leq0$?
| $24$ | |
| Vô số | |
| $26$ | |
| $25$ |
Cho $x,\,y$ là các số thực dương thỏa mãn $\log_2x+\log_2(2y)\geq\log_2\left(x^2+2y\right)$. Biết giá trị nhỏ nhất của biểu thức $P=x+2y$ có dạng $a\sqrt{b}+c$ trong đó $a,\,b,\,c$ là các số tự nhiên và $a>1$. Giá trị của $a+b+c$ bằng
| $11$ | |
| $13$ | |
| $9$ | |
| $7$ |
Tập nghiệm của bất phương trình $\ln^2x+2\ln{x}-3< 0$ là
| $\left(\mathrm{e};\mathrm{e}^3\right)$ | |
| $\left(\mathrm{e};+\infty\right)$ | |
| $\left(-\infty;\dfrac{1}{\mathrm{e}^3}\right)\cup\left(\mathrm{e};+\infty\right)$ | |
| $\left(\dfrac{1}{\mathrm{e}^3};\mathrm{e}\right)$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\left(4^x-5\cdot2^{x+2}+64\right)\sqrt{2-\log(4x)}\geq0$?
| $22$ | |
| $25$ | |
| $23$ | |
| $24$ |
Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá \(728\) số nguyên \(y\) thỏa mãn \(\log_4\left(x^2+y\right)\ge\log_3(x+y)\)?
| \(59\) | |
| \(58\) | |
| \(116\) | |
| \(115\) |