Tập hợp các giá trị của tham số \(m\) để hàm số \(y=\dfrac{x^3}{3}-6x^2+(m-2)x+11\) có \(2\) điểm cực trị trái dấu.
| \((-\infty;38)\) | |
| \((-\infty;2)\) | |
| \((-\infty;2]\) | |
| \((2;38)\) |
Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, hàm số $y=-x^3+3x^2-3mx+\dfrac{5}{3}$ có đúng một cực trị thuộc khoảng $(-2;5)$?
| $16$ | |
| $6$ | |
| $17$ | |
| $7$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x+2)^2(x-1)^5\big(x^2-2(m-6)x+m\big)$ với mọi $x\in\mathbb{R}$. Số giá trị nguyên dương của tham số $m$ để hàm số đã cho có đúng một điểm cực trị là
| $7$ | |
| $5$ | |
| $6$ | |
| $4$ |
Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=-x^4+6x^2+mx$ có ba điểm cực trị?
| $17$ | |
| $15$ | |
| $3$ | |
| $7$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
| $3$ | |
| $4$ | |
| $1$ | |
| $2$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=4x^3+mx^2-3x$. Tìm các giá trị của tham số $m$ sao cho $x_1+4x_2=0$.
| $m=0$ | |
| $m=\pm\dfrac{9}{2}$ | |
| $m=\pm\dfrac{3}{2}$ | |
| $m=\pm\dfrac{1}{2}$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=x^3-3mx^2+3\big(m^2-1\big)x-m^3+m$. Tìm các giá trị của tham số $m$ sao cho $x_1^2+x_2^2-x_1x_2=7$.
| $m=0$ | |
| $m=\pm\dfrac{9}{2}$ | |
| $m=\pm\dfrac{1}{2}$ | |
| $m=\pm2$ |
Gọi $S$ là tập hợp các giá trị nguyên để hàm số $y=\dfrac{x^3}{3}-(m+1)x^2+(m-2)x+2m-3$ đạt cực trị tại hai điểm $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=18$. Tính tổng $P$ của tất cả các giá trị $m$ trong $S$.
| $P=-4$ | |
| $P=1$ | |
| $P=-\dfrac{3}{2}$ | |
| $P=-5$ |
Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng
| $2\ln3$ | |
| $\ln3$ | |
| $\ln18$ | |
| $2\ln2$ |
Gọi $M(a;b)$ là điểm thuộc đồ thị hàm số $y=f(x)=x^3-3x^2+2$ $(\mathscr{C})$ sao cho tiếp tuyến của $(\mathscr{C})$ tại điểm $M$ có hệ số góc nhỏ nhất. Tính $a+b$.
| $-3$ | |
| $0$ | |
| $1$ | |
| $2$ |
Cho hàm số $y=f(x)$ có đạo hàm là $f^{\prime}(x)=x^{2}+10x$, $\forall x\in\mathbb{R}$. Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=f\left(x^4-8x^2+m\right)$ có đúng $9$ điểm cực trị?
| $16$ | |
| $9$ | |
| $15$ | |
| $10$ |
Đồ thị hàm số \(y=x^3-2mx^2+m^2x+n\) có tọa độ điểm cực tiểu là \((1;3)\). Khi đó \(m+n\) bằng
| \(4\) | |
| \(3\) | |
| \(2\) | |
| \(1\) |
Với giá trị nào của tham số \(m\) thì hàm số \(y=x^3-mx^2+(2m-3)x-3\) đạt cực đại tại \(x=1\)?
| \(m\leq3\) | |
| \(m=3\) | |
| \(m<3\) | |
| \(m>3\) |
Hàm số \(y=x^3-(m+2)x+m\) đạt cực tiểu tại \(x=1\) khi
| \(m=-1\) | |
| \(m=2\) | |
| \(m=-2\) | |
| \(m=1\) |
Cho hàm số \(y=\dfrac{x^3}{3}-(m+1)x^2+mx-2\). Tìm \(m\) để hàm số đạt cực đại tại \(x=-1\).
| \(m=-1\) | |
| \(m=1\) | |
| Không có \(m\) | |
| \(m=-2\) |
Cho hàm số \(y=x^3+3mx^2-2x+1\). Hàm số có điểm cực đại là \(x=-1\), khi đó giá trị của \(m\) thỏa mãn là
| \(m\in(-1;0)\) | |
| \(m\in(0;1)\) | |
| \(m\in(-3;-1)\) | |
| \(m\in(1;3)\) |
Tìm tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y=x^4+(6m-4)x^2+1-m\) có \(3\) điểm cực trị.
| \(m\geq\dfrac{2}{3}\) | |
| \(m\leq\dfrac{2}{3}\) | |
| \(m>\dfrac{2}{3}\) | |
| \(m<\dfrac{2}{3}\) |
Hàm số nào sau đây có đúng một cực tiểu?
| \(y=x^3-1\) | |
| \(y=x^4-5x^2+2\) | |
| \(y=-x^2+2x+1\) | |
| \(y=-x^4+2x^2+1\) |
Hàm số nào sau đây không có cực trị?
| \(y=2x^3-3x^2\) | |
| \(y=x^4+2\) | |
| \(y=\dfrac{x+1}{x-2}\) | |
| \(y=-x^4+2x^2+1\) |
Hàm số nào sau đây không có cực trị?
| \(y=x^3+2\) | |
| \(y=x^4-x^2+1\) | |
| \(y=x^3-3x^2+3\) | |
| \(y=-x^4+3\) |