Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(-3;4;0)\), \(\vec{b}=(5;0;12)\). Tính cosin góc giữa \(\vec{a}\) và \(\vec{b}\).
| \(\dfrac{3}{13}\) | |
| \(-\dfrac{3}{13}\) | |
| \(-\dfrac{5}{6}\) | |
| \(\dfrac{5}{6}\) |
Trong không gian $Oxyz$, cho hình hộp $ABCD.A'B'C'D'$ có $A(1;0;1)$, $B(2;1;2)$, $D(1;-1;1)$ và $A'(1;1;-1)$. Giá trị của $\cos\left(\overrightarrow{AC'},\overrightarrow{B'D'}\right)$ bằng
| $\dfrac{\sqrt{3}}{3}$ | |
| $\dfrac{\sqrt{2}}{3}$ | |
| $-\dfrac{\sqrt{3}}{3}$ | |
| $-\dfrac{\sqrt{2}}{3}$ |
Trong không gian \(Oxyz\), cho ba điểm \(A(-1;-2;3)\), \(B(0;3;1)\), \(C(4;2;2)\). Côsin của góc \(\widehat{BAC}\) bằng
| \(-\dfrac{9}{\sqrt{35}}\) | |
| \(-\dfrac{9}{2\sqrt{35}}\) | |
| \(\dfrac{9}{\sqrt{35}}\) | |
| \(\dfrac{9}{2\sqrt{35}}\) |
Giá trị cosin của góc giữa hai vectơ \(\overrightarrow{a}=(4;3;1)\) và \(\overrightarrow{b}=(0;2;3)\) là
| \(\dfrac{5\sqrt{26}}{26}\) | |
| \(\dfrac{9\sqrt{2}}{26}\) | |
| \(\dfrac{5\sqrt{2}}{26}\) | |
| \(\dfrac{9\sqrt{13}}{26}\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:
| \(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\) | |
| \(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\) | |
| \(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\) | |
| \(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\) |
Trong không gian với hệ tọa độ \(Oxyz\) cho \(A(-1;2;4)\), \(B(-1;1;4)\), \(C(0;0;4)\). Tìm số đo của \(\widehat{ABC}\).
| \(135^\circ\) | |
| \(120^\circ\) | |
| \(45^\circ\) | |
| \(60^\circ\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
| Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
| \(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
| \(\vec{m}\cdot\vec{n}=-1\) | |
| \(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho ba điểm \(A(-2;1;0)\), \(B(-3;0;4)\), \(C(0;7;3)\). Tính \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)\).
| \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\sqrt{798}}{57}\) | |
| \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{14\sqrt{118}}{354}\) | |
| \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{\sqrt{798}}{57}\) | |
| \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{7\sqrt{118}}{177}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(1;0;-3)\) và \(\vec{v}=(-1;-2;0)\). Tính \(\cos\left(\vec{u},\vec{v}\right)\).
| \(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{5\sqrt{2}}\) | |
| \(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{\sqrt{10}}\) | |
| \(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{\sqrt{10}}\) | |
| \(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{5\sqrt{2}}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(-1;1;0)\), \(\vec{v}=(0;-1;0)\). Góc giữa \(\vec{u}\) và \(\vec{v}\) có số đo bằng
| \(120^\circ\) | |
| \(45^\circ\) | |
| \(135^\circ\) | |
| \(60^\circ\) |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
| $3$ | |
| $6$ | |
| $2$ | |
| $3\sqrt{3}$ |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
| \(\cos A=\dfrac{2}{\sqrt{17}}\) | |
| \(\cos A=\dfrac{1}{\sqrt{17}}\) | |
| \(\cos A=-\dfrac{2}{\sqrt{17}}\) | |
| \(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong không gian $Oxyz$, mặt phẳng $(Oxz)$ có phương trình là
| $x=0$ | |
| $z=0$ | |
| $x+y+z=0$ | |
| $y=0$ |
Trong không gian $Oxyz$, cho vectơ $\overrightarrow{a}=-3\overrightarrow{j}+4\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là
| $(0;-4;3)$ | |
| $(-3;0;4)$ | |
| $(0;3;4)$ | |
| $(0;-3;4)$ |
Trong không gian $Oxyz$, góc giữa hai mặt phẳng $(Oxy)$ và $(Oyz)$ bằng
| $30^{\circ}$ | |
| $45^{\circ}$ | |
| $60^{\circ}$ | |
| $90^{\circ}$ |
Trong không gian $Oxyz$, mặt phẳng $(Oxz)$ có phương trình là
| $x+z=0$ | |
| $x+y+z=0$ | |
| $y=0$ | |
| $x-y+z=0$ |
Trong không gian $Oxyz$, cho hai mặt phẳng $(P)$ và $(Q)$ lần lượt có vectơ pháp tuyến $\overrightarrow{n}$ và $\overrightarrow{n'}$. Gọi $\varphi$ là góc giữa hai mặt phẳng $(P)$ và $(Q)$. Chọn công thức đúng?
| $\cos\varphi=\dfrac{\left|\overrightarrow{n'}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$ | |
| $\cos\varphi=\dfrac{\overrightarrow{n'}\cdot\overrightarrow{n}}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$ | |
| $\sin\varphi=\dfrac{\left|\overrightarrow{n'}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$ | |
| $\sin\varphi=\dfrac{\overrightarrow{n'}\cdot\overrightarrow{n}}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$ |
Trong không gian $Oxyz$, các véctơ đơn vị trên các trục $Ox$, $Oy$, $Oz$ lần lượt là $\overrightarrow{i}$, $\overrightarrow{j}$, $\overrightarrow{k}$, cho điểm $M\left(2;-1; 1\right)$. Khẳng định nào sau đây là đúng?
| $\overrightarrow{OM}=\overrightarrow{k}+\overrightarrow{j}+2\overrightarrow{i}$ | |
| $\overrightarrow{OM}=2\overrightarrow{k}-\overrightarrow{j}+\overrightarrow{i}$ | |
| $\overrightarrow{OM}=2\overrightarrow{i}-\overrightarrow{j}+\overrightarrow{k}$ | |
| $\overrightarrow{OM}=\overrightarrow{i}+\overrightarrow{j}+2\overrightarrow{k}$ |
Trong không gian $Oxyz$, vectơ $\overrightarrow{x}=\overrightarrow{i}-3\overrightarrow{j}+2\overrightarrow{k}$ có tọa độ là
| $(1;3;2)$ | |
| $(1;-3;2)$ | |
| $(1;2;3)$ | |
| $(0;-3;2)$ |
Trong không gian $Oxyz$, gọi $\varphi$ là góc tạo bởi hai vectơ $\overrightarrow{a}=(3;-1;2)$ và $\overrightarrow{b}=(1;1;-1)$. Mệnh đề nào dưới đây đúng?
| $\varphi=30^{\circ}$ | |
| $\varphi=45^{\circ}$ | |
| $\varphi=90^{\circ}$ | |
| $\varphi=60^{\circ}$ |