Cho hai số phức $z_1=2-i$ và $z_2=1+3i$. Phần thực của số phức $z_1-z_2$ bằng
| $3$ | |
| $-4$ | |
| $1$ | |
| $-1$ |
Cho số phức $z=2+9i$, phần thực của số phức $z^2$ bằng
| $-77$ | |
| $4$ | |
| $36$ | |
| $85$ |
Tìm phần thực, phần ảo, số phức liên hợp và tính môđun của số phức $$z=\left(2-4i\right)\left(5+2i\right)+\dfrac{4-5i}{2+i}.$$
Phần thực của số phức $z=5-2i$ bằng
| $5$ | |
| $2$ | |
| $-5$ | |
| $-2$ |
Cho hai số phức $z_1=3-2i$ và $z_2=\left(i+1\right)z_1$. Phần thực của số phức $w=2z_1-z_2$ bằng
| $1$ | |
| $-5$ | |
| $7$ | |
| $-1$ |
Điểm $A$ trong hình vẽ bên biểu diễn cho số phức $z$. Mệnh đề nào sau đây đúng?
| Phần thực là $-3$, phần ảo là $2$ | |
| Phần thực là $-3$, phần ảo là $2i$ | |
| Phần thực là $3$, phần ảo là $-2i$ | |
| Phần thực là $3$, phần ảo là $2$ |
Cho số phức $z$ thỏa mãn $(2-i)z+3i+2=0$. Phần thực của số phức $z$ bằng
| $-\dfrac{1}{5}$ | |
| $-\dfrac{8}{5}$ | |
| $\dfrac{8}{5}$ | |
| $\dfrac{1}{5}$ |
Trên mặt phẳng tọa độ, cho $M(2;3)$ là điểm biểu diễn của số phức $z$. Phần thực của $z$ bằng
| $2$ | |
| $3$ | |
| $-3$ | |
| $-2$ |
Số phức có phần thực bằng $3$ và phần ảo bằng $2$ là
| $3+2i$ | |
| $2+3i$ | |
| $2-3i$ | |
| $3-2i$ |
Tìm phần thực $a$ và phần ảo $b$ của số phức $z=\sqrt{5}-2i$.
| $a=-2,\,b=\sqrt{5}$ | |
| $a=\sqrt{5},\,b=2$ | |
| $a=\sqrt{5},\,b=-2$ | |
| $a=\sqrt{5},\,b=-2i$ |
Cho số phức $z=-5+2i$. Phần thực và phần ảo của số phức $\overline{z}$ lần lượt là
| $5$ và $-2$ | |
| $5$ và $2$ | |
| $-5$ và $2$ | |
| $-5$ và $-2$ |
Gọi $a,\,b$ lần lượt là phần thực và phần ảo của số phức $z=-3+2i$. Giá trị của $a-b$ bằng
| $1$ | |
| $5$ | |
| $-5$ | |
| $-1$ |
Có bao nhiêu số phức $z$ có phần thực bằng $2$ và $|z+1-2i|=3$?
| $0$ | |
| $1$ | |
| $3$ | |
| $2$ |
Trên mặt phẳng tọa độ, biết \(M\left(-3;1\right)\) là điểm biểu diễn số phức \(z\). Phần thực của \(z\) bằng
| \(1\) | |
| \(-3\) | |
| \(-1\) | |
| \(3\) |
Cho hai số phức \(z_1=2+i\) và \(z_2=1+3i\). Phần thực của số phức \(z_1+z_2\) bằng
| \(1\) | |
| \(3\) | |
| \(4\) | |
| \(-2\) |
Tìm phần thực, phần ảo của số phức $$z=\dfrac{3-i}{1+i}+\dfrac{2+i}{i}.$$
| Phần thực là \(2\), phần ảo là \(4i\) | |
| Phần thực là \(2\), phần ảo là \(-4i\) | |
| Phần thực là \(2\), phần ảo là \(4\) | |
| Phần thực là \(2\), phần ảo là \(-4\) |
Tìm phần thực và phần ảo của số phức $$z=\dfrac{6-3i}{2+5i}.$$
| Phần thực là \(-\dfrac{3}{29}\) và phần ảo là \(-\dfrac{36}{29}\) | |
| Phần thực là \(-\dfrac{3}{29}\) và phần ảo là \(-\dfrac{36}{29}i\) | |
| Phần thực là \(\dfrac{1}{7}\) và phần ảo là \(\dfrac{12}{7}\) | |
| Phần thực là \(\dfrac{1}{7}\) và phần ảo là \(\dfrac{12}{7}i\) |
Cho hai số phức \(z_1=3+2i\) và \(z_2=1-5i\). Tìm phần thực và phần ảo của số phức \(z_1+z_2\).
| Phần thực là \(4\) và phần ảo là \(3\) | |
| Phần thực là \(4\) và phần ảo là \(-3i\) | |
| Phần thực là \(4\) và phần ảo là \(3i\) | |
| Phần thực là \(4\) và phần ảo là \(-3\) |
Tìm phần thực và phần ảo của số phức \(z=2-3i\).
| Phần thực là \(2\) và phần ảo là \(3\) | |
| Phần thực là \(2\) và phần ảo là \(-3\) | |
| Phần thực là \(2\) và phần ảo là \(3i\) | |
| Phần thực là \(2\) và phần ảo là \(-3i\) |
Cho số phức \(z=a+bi\). Số phức \(z^2\) có phần thực và phần ảo là
| \(a^2+b^2\) và \(2a^2b^2\) | |
| \(a+b\) và \(a^2b^2\) | |
| \(a^2-b^2\) và \(2ab\) | |
| \(a-b\) và \(ab\) |