Có bao nhiêu số nguyên $x$ thỏa mãn $\left(3^{x^2}-9^x\right)\left[\log_3(x+25)-3\right]\leq0$?
| $24$ | |
| Vô số | |
| $26$ | |
| $25$ |
Có bao nhiêu số nguyên $a$ sao cho ứng với mỗi $a$, tồn tại ít nhất bốn số nguyên $b\in(-12;12)$ thỏa mãn $4^{a^2+b}\leq3^{b-a}+65$?
| $4$ | |
| $6$ | |
| $5$ | |
| $7$ |
Tìm số nghiệm nguyên của bất phương trình $$2^{x+2}+8\cdot2^{-x}-33<0$$
| \(4\) | |
| \(6\) | |
| \(7\) | |
| Vô số |
Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $\log_3\big(x^2+y^2+x\big)+\log_2\big(x^2+y^2\big)\leq\log_3x+\log_2\big(x^2+y^2+24x\big)?$
| $89$ | |
| $48$ | |
| $90$ | |
| $49$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\log_3\dfrac{x^2-16}{343}< \log_7\dfrac{x^2-16}{27}$?
| $193$ | |
| $92$ | |
| $186$ | |
| $184$ |
Có bao nhiêu số nguyên $y$ sao cho tồn tại số thực $x$ thỏa mãn $\log_2\left(4444+4x-2x^2\right)=2\cdot2^{y^2}+y^2+x^2-2x-2220$?
| $13$ | |
| $9$ | |
| $11$ | |
| $7$ |
Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá \(728\) số nguyên \(y\) thỏa mãn \(\log_4\left(x^2+y\right)\ge\log_3(x+y)\)?
| \(59\) | |
| \(58\) | |
| \(116\) | |
| \(115\) |
Phương trình \(\sin2x=-\dfrac{1}{2}\) có bao nhiêu nghiệm thõa \(0<x<\pi\)?
| \(1\) | |
| \(3\) | |
| \(2\) | |
| \(4\) |
Cho phương trình \(x^2+y^2-2x+2my+10=0\) (1). Có bao nhiêu giá trị \(m\) nguyên dương không vượt quá \(10\) để (1) là phương trình của đường tròn?
| Không có | |
| \(6\) | |
| \(7\) | |
| \(8\) |
Hệ bất phương trình \(\begin{cases}6x+\dfrac{5}{7}>4x+7\\ \dfrac{8x+3}{2}<2x+25\end{cases}\) có bao nhiêu nghiệm nguyên?
| \(7\) | |
| \(8\) | |
| \(10\) | |
| \(9\) |
Số giá trị nguyên của tham số \(m\) để hàm số $$y=x^3-(m+2)x^2+\left(m^2+2m\right)x$$có cực trị là
| \(2\) | |
| \(1\) | |
| \(3\) | |
| \(0\) |
Số giá trị nguyên của tham số \(m\) để hàm số \(y=x^3-mx^2-2mx\) đồng biến trên \(\mathbb{R}\) là
| \(0\) | |
| \(8\) | |
| \(7\) | |
| \(6\) |
Có bao nhiêu giá trị nguyên dương của \(x\) thỏa mãn $$\dfrac{x+3}{x^2-4}-\dfrac{1}{x+2}<\dfrac{2x}{2x-x^2}?$$
| \(0\) | |
| \(2\) | |
| \(1\) | |
| \(3\) |
Có bao nhiêu giá trị nguyên của \(x\) thỏa mãn bất phương trình \(\dfrac{x^4-x^2}{x^2+5x+6}\leq0\)?
| \(0\) | |
| \(2\) | |
| \(1\) | |
| \(3\) |
Số giá trị nguyên của \(x\) để tam thức bậc hai \(f(x)=2x^2-7x-9\) nhận giá trị âm là
| \(3\) | |
| \(4\) | |
| \(5\) | |
| \(6\) |
Có bao nhiêu số nguyên \(x\) thỏa mãn bất phương trình \(\log_{\tfrac{1}{2}}\left[\log_2\left(2-x^2\right)\right]>0\)?
| Vô số | |
| \(1\) | |
| \(0\) | |
| \(2\) |
Có bao nhiêu số nguyên trên đoạn \([0;10]\) nghiệm đúng bất phương trình \(\log_2(3x-4)>\log_2(x-1)\)?
| \(9\) | |
| \(10\) | |
| \(8\) | |
| \(11\) |
Bất phương trình \(\log_{\tfrac{4}{5}}\dfrac{2x+1}{x+5}\geq2\) có bao nhiêu nghiệm nguyên?
| \(2\) | |
| \(3\) | |
| \(4\) | |
| \(1\) |
Tìm số nghiệm nguyên của bất phương trình $$\log_{0,8}(15x+2)>\log_{0,8}(13x+8)$$
| Vô số | |
| \(4\) | |
| \(2\) | |
| \(3\) |
Cho biểu thức \(f(x)=\dfrac{(x-3)(x+2)}{x^2-1}\). Có tất cả bao nhiêu giá trị nguyên âm của \(x\) thỏa mãn \(f(x)<1\)?
| \(1\) | |
| \(2\) | |
| \(3\) | |
| \(4\) |