Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:

Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
| $1$ | |
| $3$ | |
| $2$ | |
| $4$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu của đạo hàm như sau:

Số điểm cực đại của hàm số đã cho là
| $3$ | |
| $1$ | |
| $2$ | |
| $0$ |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:

Số điểm cực trị của hàm số đã cho bằng
| $3$ | |
| $0$ | |
| $1$ | |
| $2$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu của đạo hàm như sau:

Số điểm cực đại của hàm số đã cho là
| $3$ | |
| $1$ | |
| $2$ | |
| $0$ |
Cho hàm số $f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu của $f'(x)$ như hình:

Hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu
| $1$ | |
| $2$ | |
| $3$ | |
| $4$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có bảng xét dấu đạo hàm như sau:
Số điểm cực đại của hàm số đã cho là
| $4$ | |
| $-2$ | |
| $2$ | |
| $5$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là
| $5$ | |
| $3$ | |
| $2$ | |
| $4$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của đạo hàm như sau:

Số điểm cực trị của hàm số đã cho là
| $3$ | |
| $2$ | |
| $4$ | |
| $5$ |
Cho hàm số \(f\left(x\right)\) có bảng xét dấu của \(f'\left(x\right)\) như sau:

Số điểm cực trị của hàm số đã cho là
| \(3\) | |
| \(0\) | |
| \(2\) | |
| \(1\) |
Cho hàm số \(f\left(x\right)\), bảng xét dấu của \(f'\left(x\right)\) như sau:

Số điểm cực trị của hàm số đã cho là
| \(0\) | |
| \(2\) | |
| \(1\) | |
| \(3\) |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Số điểm cực tiểu của hàm số đã cho là
| $0$ | |
| $3$ | |
| $2$ | |
| $1$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số điểm cực tiểu của hàm số đã cho là
| $1$ | |
| $3$ | |
| $0$ | |
| $2$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Số điểm cực trị của hàm số đã cho bằng
| $1$ | |
| $2$ | |
| $3$ | |
| $0$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
| $3$ | |
| $4$ | |
| $1$ | |
| $2$ |
Cho hàm số $y=ax^4+bx^2+c$ có đồ thị như đường cong trong hình bên.

Số điểm cực trị của hàm số đã cho là
| $2$ | |
| $3$ | |
| $1$ | |
| $0$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.

Tìm $m$ để hàm số $g(x)=f\big(x^2+m\big)$ có $3$ điểm cực trị.
| $m\in(-\infty;0]$ | |
| $m\in(3;+\infty)$ | |
| $m\in[0;3)$ | |
| $m\in(0;3)$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.

Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)=f\big(x^2-8x+m\big)$ có $5$ điểm cực trị.
| $15$ | |
| $16$ | |
| $17$ | |
| $18$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Số điểm cực trị của hàm số $g(x)=3f\big(f(x)\big)+4$ là
| $5$ | |
| $3$ | |
| $8$ | |
| $2$ |
Cho hàm số $f(x)$, bảng biến thiên của hàm số $f'(x)$ như sau:

Số điểm cực trị của hàm số $f\big(x^2-2x\big)$ là
| $9$ | |
| $3$ | |
| $7$ | |
| $5$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị như hình vẽ.

Tìm số điểm cực trị của hàm số $g(x)=f\left(x^2\right)$.
| $5$ | |
| $3$ | |
| $7$ | |
| $11$ |