Tìm tất cả các giá trị thực của tham số $m$ để hàm số $y=\ln\big(x^2-2x+m+1\big)$ có tập xác định là $\mathbb{R}$.
| $m=0$ | |
| $m< -1$ hoặc $m>0$ | |
| $m>0$ | |
| $0< m< 3$ |
Tìm tập xác định của hàm số $y=\log_{2023}\big(3x-x^2\big)$.
| $\mathscr{D}=(0;+\infty)$ | |
| $\mathscr{D}=(-\infty;0)\cup(3;+\infty)$ | |
| $\mathscr{D}=\mathbb{R}$ | |
| $\mathscr{D}=(0;3)$ |
Tập xác định của hàm số $y=x^{\sqrt{2}-1}$ là
| $\big(-\infty;\sqrt{2}\big)$ | |
| $\mathbb{R}\setminus\{0\}$ | |
| $\mathbb{R}$ | |
| $(0;+\infty)$ |
$\displaystyle\lim\limits_{x\to0}\dfrac{\mathrm{e}^x-1}{3x}$ bằng
| $0$ | |
| $1$ | |
| $3$ | |
| $\dfrac{1}{3}$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
| $y=\mathrm{e}^x$ | |
| $y=\big(\sqrt{2}\big)^x$ | |
| $y=\left(\dfrac{4}{3}\right)^x$ | |
| $y=\left(\dfrac{1}{3}\right)^x$ |
Tập xác định của hàm số $y=\log_{\sqrt{3}}x$ là
| $[0;+\infty)$ | |
| $(0;+\infty)$ | |
| $(-\infty;0)$ | |
| $\mathbb{R}$ |
Cho đồ thị của các hàm số $y=a^x$, $y=b^x$, $y=c^x$ như hình bên.

Hỏi trong các số $a,\,b$ và $c$ có bao nhiêu số lớn hơn $1$?
| $0$ | |
| $3$ | |
| $2$ | |
| $1$ |
Tập xác định của hàm số $y=\log_{2022}(2x-1)$ là
| $[0;+\infty)$ | |
| $\left(\dfrac{1}{2};+\infty\right)$ | |
| $\left[\dfrac{1}{2};+\infty\right)$ | |
| $(0;+\infty)$ |
Tập xác định của hàm số $y=\ln(2-x)$ là
| $\mathscr{D}=\mathbb{R}$ | |
| $\mathscr{D}=(-\infty;2)$ | |
| $\mathscr{D}=(2;+\infty)$ | |
| $\mathscr{D}=\mathbb{R}\setminus\{2\}$ |
Tiệm cận ngang của đồ thị hàm số $y=3^x$ và tiệm cận đứng của đồ thị hàm số $y=\log_2x$ lần lượt có phương trình là
| $y=3$ và $x=0$ | |
| $x=0$ và $y=0$ | |
| $y=0$ và $x=2$ | |
| $y=0$ và $x=0$ |
Cho $a$ và $b$ là hai số thực dương khác $1$ và các hàm số $y=a^x$, $y=b^x$ có đồ thị như hình bên.

Đường thẳng $y=3$ cắt trục tung, đồ thị hàm số $y=a^x$, đồ thị hàm số $y=b^x$ lần lượt tại $H,\,M,\,N$. Biết rằng $HM=2MN$. Mệnh đề nào sau đây đúng?
| $a^2=b^3$ | |
| $3a=2b$ | |
| $a^3=b^2$ | |
| $2a=b$ |
Tập xác định của hàm số $y=(x+2)^{-2022}$ là
| $[-2;+\infty)$ | |
| $(-2;+\infty)$ | |
| $\mathbb{R}\setminus\{-2\}$ | |
| $\mathbb{R}$ |
Trong hình bên là đồ thị các hàm số $y=a^x$ và $y=b^x$.

Mệnh đề nào dưới đây là đúng?
| $0< a< 1< b$ | |
| $1< a< b$ | |
| $0< a< b< 1$ | |
| $0< b< 1< a$ |
$\lim\limits_{x\to0}\dfrac{\mathrm{e}^x-1}{3x}$ bằng
| $0$ | |
| $1$ | |
| $3$ | |
| $\dfrac{1}{3}$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
| $y=\mathrm{e}^x$ | |
| $y=\big(\sqrt{2}\big)^x$ | |
| $y=\left(\dfrac{4}{3}\right)^x$ | |
| $y=\left(\dfrac{1}{3}\right)^x$ |
Tập xác định của hàm số $y=\log_{\sqrt{3}}x$ là
| $[0;+\infty)$ | |
| $(0;+\infty)$ | |
| $(-\infty;0)$ | |
| $\mathbb{R}$ |
Có bao nhiêu số nguyên thuộc tập xác định của hàm số $y=\log\big[(6-x)(x+2)\big]$?
| $7$ | |
| $8$ | |
| $9$ | |
| Vô số |
Cho hàm số $f(x)=\mathrm{e}^x+2x$. Khẳng định nào dưới đây đúng?
| $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+x^2+C$ | |
| $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+C$ | |
| $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x-x^2+C$ | |
| $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+2x^2+C$ |
Tập xác định của hàm số $y=\log_3(x-4)$ là
| $(5;+\infty)$ | |
| $(-\infty;+\infty)$ | |
| $(4;+\infty)$ | |
| $(-\infty;4)$ |
Tìm tất cả các giá trị thực của tham số $m$ để hàm số $y=\log_2\left(x^2-2x+m\right)$ có tập xác định là $\mathbb{R}$.
| $m\geq1$ | |
| $m\leq1$ | |
| $m>1$ | |
| $m< -1$ |