Hàm số nào dưới đây có bảng biến thiên như hình bên?

| $y=-x^3+3x+1$ | |
| $y=\dfrac{x-1}{x+1}$ | |
| $y=\dfrac{x+1}{x-1}$ | |
| $y=x^4-x^2+1$ |
Trong các hàm số sau, hàm số nào không có cực trị?
| $y=x^2$ | |
| $y=\dfrac{x+2}{2x-1}$ | |
| $y=x^4+2x^2+2$ | |
| $y=-x^3-x^2$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
| $y=x^4-x^2$ | |
| $y=x^3-x$ | |
| $y=\dfrac{x-1}{x+2}$ | |
| $y=x^3+x$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
| $y=-x^3-x$ | |
| $y=-x^4-x^2$ | |
| $y=-x^3+x$ | |
| $y=\dfrac{x+2}{x-1}$ |
Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

| $y=x^4-2x^2-1$ | |
| $y=\dfrac{x+1}{x-1}$ | |
| $y=x^3-3x-1$ | |
| $y=x^2+x-1$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
| $y=\dfrac{x+1}{x-2}$ | |
| $y=x^2+2x$ | |
| $y=x^3-x^2+x$ | |
| $y=x^4-3x^2+2$ |
Đồ thị hàm số nào dưới đây không có đường tiệm cận?
| \(y=\dfrac{x}{x^2+1}\) | |
| \(y=\dfrac{1}{x}\) | |
| \(y=x^4-3x^2+2\) | |
| \(y=\dfrac{2x+1}{2-x}\) |
Hàm số nào sau đây không có cực trị?
| \(y=2x^3-3x^2\) | |
| \(y=x^4+2\) | |
| \(y=\dfrac{x+1}{x-2}\) | |
| \(y=-x^4+2x^2+1\) |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
| \(y=\dfrac{x-1}{x}\) | |
| \(y=2x^3\) | |
| \(y=x^2+1\) | |
| \(y=x^4+5\) |
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
| \(y=\sqrt{x^2-3x+2}\) | |
| \(y=x^4+x^2+1\) | |
| \(y=\dfrac{x-1}{x+1}\) | |
| \(y=x^3+5x+13\) |
Đồ thị của hàm số nào dưới đây có đúng một điểm cực trị?
| $y=x^3-2x^2-1$ | |
| $y=-x^4+2x^2-1$ | |
| $y=x^4-2x^2-1$ | |
| $y=x^4+2x^2+1$ |
Hàm số nào dưới đây nghịch biến trên tập $\mathbb{R}$?
| $y=3x^3-x$ | |
| $y=-2x^4-x$ | |
| $y=-2x^3+3$ | |
| $y=-x^4+2$ |
Hàm số nào dưới đây có bảng biến thiên như sau?

| $y=\dfrac{x+2}{x}$ | |
| $y=-x^3+3x+1$ | |
| $y=x^4-3x^2$ | |
| $y=-2x^2+1$ |
Đường cong trong hình vẽ sau là đồ thị của hàm số nào dưới đây?

| $y=-x^3+3x-2$ | |
| $y=x^3-3x+2$ | |
| $y=x^4-3x^2-2$ | |
| $y=x^4-3x^2+2$ |
Tìm tập xác định $\mathscr{D}$ của hàm số $y=\dfrac{3x-1}{2x-2}$.
| $\mathscr{D}=\Bbb{R}$ | |
| $\mathscr{D}=\Bbb{R}\setminus\left\{2\right\}$ | |
| $\mathscr{D}=\left[1;+\infty\right)$ | |
| $\mathscr{D}=\Bbb{R}\setminus\left\{1\right\}$ |

Đồ thị trong hình vẽ bên là của hàm số
| \(y=-x^2+x-4\) | |
| \(y=x^4-3x^2-4\) | |
| \(y=-x^3+2x^2+4\) | |
| \(y=-x^4+3x^2+4\) |

Đường cong trong hình vẽ bên là của hàm số nào sau đây?
| \(y=-x^3+x^2-2\) | |
| \(y=-x^4+3x^2-2\) | |
| \(y=x^4-2x^2-3\) | |
| \(y=-x^2+x-1\) |

Đường cong trong hình trên là đồ thị của hàm số nào dưới đây?
| \(y=-x^3+3x+1\) | |
| \(y=\dfrac{x+1}{x-1}\) | |
| \(y=\dfrac{x-1}{x+1}\) | |
| \(y=x^3-3x-1\) |
Đồ thị hàm số nào sau đây có \(3\) đường tiệm cận?
| \(y=\dfrac{1-2x}{1+x}\) | |
| \(y=\dfrac{1}{4-x^2}\) | |
| \(y=\dfrac{x+3}{5x-1}\) | |
| \(y=\dfrac{x}{x^2-x+9}\) |
Đồ thị của hàm số nào dưới đây có tiệm cận đứng?
| \(y=\dfrac{\sqrt{1-x^2}+1}{2019}\) | |
| \(y=\dfrac{x^2-1}{x-1}\) | |
| \(y=\dfrac{x^2}{x^2+2018}\) | |
| \(y=\dfrac{x}{x+12}\) |