Ngân hàng bài tập

Bài tập tương tự

SSS

Cho $x,\,y$ là các số thực thỏa mãn $(x-3)^2+(y-1)^2=5$. Giá trị nhỏ nhất của biểu thức $P=\dfrac{3y^2+4xy+7x+4y-1}{x+2y+1}$ là

$2\sqrt{3}$
$\dfrac{114}{11}$
$\sqrt{3}$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho $x,\,y$ là hai số thực bất kì thuộc đoạn $[1;3]$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S=\dfrac{x}{y}+\dfrac{y}{x}$. Tính $M+m$.

$M+m=\dfrac{10}{3}$
$M+m=\dfrac{16}{3}$
$M+m=3$
$M+m=5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hai số thực $x,\,y$ thay đổi thỏa mãn điều kiện $x^2+y^2=2$. Gọi $M$, $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=2\big(x^3+y^3\big)-3xy$. Giá trị của $M+m$ bằng

$-4$
$-\dfrac{1}{2}$
$-6$
$1-4\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét các số thực không âm \(x\) và \(y\) thỏa mãn \(2x+y\cdot4^{x+y-1}\geq3\). Giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+4x+6y\) bằng

\(\dfrac{33}{4}\)
\(\dfrac{65}{8}\)
\(\dfrac{49}{8}\)
\(\dfrac{57}{8}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho \(x,\,y\) là hai số không âm thỏa mãn \(x+y=2\). Tìm giá trị nhỏ nhất của biểu thức $$P=\dfrac{x^3}{3}+x^2+y^2-x+1$$

\(\dfrac{17}{3}\)
\(5\)
\(\dfrac{115}{3}\)
\(\dfrac{7}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho các số dương \(a,\,b,\,c\) thỏa mãn \(abc=8\). Tìm giá trị nhỏ nhất của biểu thức $$P=(a+b)(b+c)(c+a).$$

\(16\sqrt{2}\)
\(64\)
\(16\)
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho biết \(9^x-12^2=0\), tính giá trị của biểu thức $$P=\dfrac{1}{3^{-x-1}}-8\cdot9^{\tfrac{x-1}{2}}+19.$$

\(31\)
\(23\)
\(22\)
\(15\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai số \(x,\,y\) sao cho \(xy=3\). Giá trị nhỏ nhất của \(A=x^2+y^2\) là

\(2\)
\(3\)
\(4\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho ba số \(x,\,y,\,z>0\). Tìm giá trị nhỏ nhất của biểu thức $$S=\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}$$

\(0\)
\(2\)
\(4\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.

$m=1$
$m=4$
$m=13$
$m=8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.

$m\geq2$
$m\leq2$
$m=2$
$m>2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{4}{x}+\dfrac{x}{1-x}\) trên khoảng \((0;1)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{(x+2)(x+8)}{x}\) trên khoảng \((0;+\infty)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+2x+2}{x+1}\) trên khoảng \((-1;+\infty)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là

$4\sqrt{2}$
$2\sqrt{2}$
$4$
$\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?

\(3\)
\(2\)
\(4\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).

\(m\leq3\)
\(m\leq-3\)
\(m\leq5\)
\(m\leq-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Từ một tấm bìa hình vuông \(ABCD\) có cạnh bằng \(5\)dm, người ta cắt bỏ bốn tam giác bằng nhau \(AMB\), \(BNC\), \(CPD\), \(DQA\).

Với phần còn lại, người ta gắp lên và ghép lại để thành hình chóp tứ giác đều. Hỏi cạnh đáy của khối chóp bằng bao nhiêu để thể tích của nó là lớn nhất?

\(\dfrac{3\sqrt{2}}{2}\)
\(\dfrac{5}{2}\)
\(\dfrac{5\sqrt{2}}{2}\)
\(2\sqrt{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).

\(m=\dfrac{1}{2}\)
\(m=\dfrac{7}{2}\)
\(m=4\)
\(m=8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự