Ngân hàng bài tập

Bài tập tương tự

C

Trong không gian $Oxyz$, mặt phẳng $(Oxz)$ có phương trình là

$x=0$
$z=0$
$x+y+z=0$
$y=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho vectơ $\overrightarrow{a}=-3\overrightarrow{j}+4\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là

$(0;-4;3)$
$(-3;0;4)$
$(0;3;4)$
$(0;-3;4)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, góc giữa hai mặt phẳng $(Oxy)$ và $(Oyz)$ bằng

$30^{\circ}$
$45^{\circ}$
$60^{\circ}$
$90^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, mặt phẳng $(Oxz)$ có phương trình là

$x+z=0$
$x+y+z=0$
$y=0$
$x-y+z=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai điểm $A(2;1;1)$, $B(-1;2;1)$. Tọa độ trung điểm của đoạn thẳng $AB$ là

$I(-3;1;0)$
$I\left(\dfrac{1}{2};\dfrac{3}{2};1\right)$
$I\left(-\dfrac{3}{2};-\dfrac{1}{2};0\right)$
$I\left(\dfrac{1}{3};1;\dfrac{2}{3}\right)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai mặt phẳng $(P)$ và $(Q)$ lần lượt có vectơ pháp tuyến $\overrightarrow{n}$ và $\overrightarrow{n'}$. Gọi $\varphi$ là góc giữa hai mặt phẳng $(P)$ và $(Q)$. Chọn công thức đúng?

$\cos\varphi=\dfrac{\left|\overrightarrow{n'}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$
$\cos\varphi=\dfrac{\overrightarrow{n'}\cdot\overrightarrow{n}}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$
$\sin\varphi=\dfrac{\left|\overrightarrow{n'}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$
$\sin\varphi=\dfrac{\overrightarrow{n'}\cdot\overrightarrow{n}}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, các véctơ đơn vị trên các trục $Ox$, $Oy$, $Oz$ lần lượt là $\overrightarrow{i}$, $\overrightarrow{j}$, $\overrightarrow{k}$, cho điểm $M\left(2;-1; 1\right)$. Khẳng định nào sau đây là đúng?

$\overrightarrow{OM}=\overrightarrow{k}+\overrightarrow{j}+2\overrightarrow{i}$
$\overrightarrow{OM}=2\overrightarrow{k}-\overrightarrow{j}+\overrightarrow{i}$
$\overrightarrow{OM}=2\overrightarrow{i}-\overrightarrow{j}+\overrightarrow{k}$
$\overrightarrow{OM}=\overrightarrow{i}+\overrightarrow{j}+2\overrightarrow{k}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, vectơ $\overrightarrow{x}=\overrightarrow{i}-3\overrightarrow{j}+2\overrightarrow{k}$ có tọa độ là

$(1;3;2)$
$(1;-3;2)$
$(1;2;3)$
$(0;-3;2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai điểm $A(1;1;2)$ và $B(3;1;0)$. Trung điểm của đoạn thẳng $AB$ có tọa độ là

$(4;2;2)$
$(2;1;1)$
$(2;0;-2)$
$(1;0;-1)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai điểm \(A\left(1;5;-2\right)\), \(B\left(3;1;2\right)\). Viết phương trình mặt phẳng trung trực của đoạn thẳng \(AB\).

\(2x+3y+4=0\)
\(x-2y+2z-8=0\)
\(x-2y+2z+8=0\)
\(x-2y+2z+4=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm mệnh đề sai trong các mệnh đề sau:

Mặt cầu tâm \(I\left(2;-3;-4\right)\) tiếp xúc với mặt phẳng \(\left(Oxy\right)\) có phương trình \(x^2+y^2+z^2-4x+6y+8z+13=0\)
Mặt cầu \(\left(S\right)\) có phương trình \(x^2+y^2+z^2-2x-4y-6z=0\) cắt trục \(Ox\) tại \(A\) (khác gốc tọa độ \(O\)). Khi đó tọa đô là \(A\left(2;0;0\right)\)
Mặt cầu \(\left(S\right)\) có phương trình \(\left(x-a\right)^2+\left(y-b\right)^2+\left(z-c\right)^2=R^2\) tiếp xúc với trục \(Ox\) thì bán kính mặt cầu \(\left(S\right)\) là \(r=\sqrt{b^2+c^2}\)
\(x^2+y^2+z^2+2x-2y-2z+10=0\) là phương trình mặt cầu
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?

\(x^2+y^2+z^2-2x-2y-2z-8=0\)
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)
\(2x^2+2y^2+2z^2-4x+2y+2z+16=0\)
\(3x^2+3y^2+3z^2-6x+12y-24z+16=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(M\left(2;1;-1\right)\) trên mặt phẳng \(\left(Ozx\right)\) có tọa độ là

\(\left(0;1;0\right)\)
\(\left(2;1;0\right)\)
\(\left(0;1;-1\right)\)
\(\left(2;0;-1\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), chọn câu đúng trong các câu sau:

Mặt phẳng tọa độ \((Oxy)\) có phương trình \(z=0\)
Mặt phẳng tọa độ \((Ozx)\) có phương trình \(x=0\)
Mặt phẳng tọa độ \((Oyz)\) có phương trình \(y+z=0\)
Mặt phẳng tọa độ \((Oxy)\) có phương trình \(x+y=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho mặt phẳng \(\left(P\right)\colon2x-3z-1=0\). Khi đó \(\left(P\right)\) có một vectơ pháp tuyến là

\(\overrightarrow{n}=\left(2;-3;1\right)\)
\(\overrightarrow{n}=\left(2;-3;0\right)\)
\(\overrightarrow{n}=\left(2;0;-3\right)\)
\(\overrightarrow{n}=\left(2;-3;-1\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), điều kiện để phương trình dạng \(x^2+y^2+z^2+2ax+2by+2cz+d=0\) là phương trình của mặt cầu tâm \(I(-a;-b;-c)\), bán kính \(R=\sqrt{a^2+b^2+c^2-d}\) là

\(a^2+b^2+c^2+d>0\)
\(a^2+b^2+c^2-d>0\)
\(a^2+b^2+c^2+d^2>0\)
\(a^2+b^2+c^2-d^2>0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian với hệ toạ độ \(Oxyz\) cho \(\overrightarrow{OM}=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}\). Tọa độ của điểm \(M\) là

\(M(x;y;z)\)
\(M\left(x\overrightarrow{i};y\overrightarrow{j};z\overrightarrow{k}\right)\)
\(M\left(\overrightarrow{i};\overrightarrow{j};\overrightarrow{k}\right)\)
\(M(z;y;x)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian với hệ toạ độ \(Oxyz\) cho \(A\left(x_A;y_A;z_A\right)\), \(B\left(x_B;y_B;z_B\right)\). Công thức nào dưới đây là đúng.

\(\overrightarrow{AB}=\left(x_A-x_B;y_A-y_B;z_A-z_B\right)\)
\(\overrightarrow{BA}=\left(x_A+x_B;y_A+y_B;z_A+z_B\right)\)
\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2}\)
\(\left|\overrightarrow{AB}\right|=\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:

\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\)
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\)
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\)
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\) đều khác vectơ-không. Gọi \(\alpha\) là góc giữa hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\). Câu nào sai trong các câu sau:

\(\overrightarrow{a}\bot\overrightarrow{b}\Leftrightarrow a_1b_1+a_2b_2+a_3b_3=0\)
\(\cos\alpha=\dfrac{a_1b_1+a_2b_2+a_3b_3}{\left(a_1^2+a_2^2+a_3^2\right)\cdot\left(b_1^2+b_2^2+b_3^2\right)}\)
\(\cos\alpha=\dfrac{\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{a}\right|\cdot\left|\overrightarrow{b}\right|}\)
\(\cos\alpha=\dfrac{a_1b_1+a_2b_2+a_3b_3}{\sqrt{a_1^2+a_2^2+a_3^2}\cdot\sqrt{b_1^2+b_2^2+b_3^2}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự