Ngân hàng bài tập

Toán học

C

Khẳng định nào dưới đây đúng?

$\displaystyle\displaystyle\int x^{\tfrac{1}{3}}\mathrm{~d}x=x^{\tfrac{4}{3}}+C$
$\displaystyle\displaystyle\int x^{\tfrac{1}{3}}\mathrm{~d}x=\dfrac{3}{4} x^{\tfrac{4}{3}}+C$
$\displaystyle\displaystyle\int x^{\tfrac{1}{3}}\mathrm{~d}x=x^{\tfrac{2}{3}}+C$
$\displaystyle\displaystyle\int x^{\tfrac{1}{3}}\mathrm{~d}x=\dfrac{3}{2} x^{\tfrac{2}{3}}+C$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập nghiệm của bất phương trình $2^{2x}< 8$ là

$\left(-\infty;\dfrac{3}{2}\right)$
$\left(\dfrac{3}{2};+\infty\right)$
$(-\infty;2)$
$\left(0;\dfrac{3}{2}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+x f'(x)=4x^3-6x^2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng

$\dfrac{7}{12}$
$\dfrac{45}{4}$
$\dfrac{1}{2}$
$\dfrac{71}{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$

$21$
$10$
$8$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian $Oxyz$, cho hai điểm $A(1;4;3)$, $B(5;0;3)$. Một hình trụ $(T)$ nội tiếp trong mặt cầu đường kính $AB$ đồng thời nhận $AB$ làm trục của hình trụ. Gọi $M$ và $N$ lần lượt là tâm các đường tròn đáy của $(T)$ ($M$ nằm giữa $A$, $N$). Khi thiết diện qua trục của $(T)$ có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm $M$ của $(T)$ có dạng $ax+by+cz+d=0$. Giá trị của $b-d$ bằng

$2\sqrt{2}$
$2+2\sqrt{2}$
$-2\sqrt{2}$
$4+\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét các số phức $z$ thỏa mãn điều kiện $\left|\dfrac{-2-3i}{3-2i}z+1\right|=1$. Gọi $m, M$ lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức $P=|z|$. Tính $S=2023-3M+2m$.

$S=2021$
$S=2017$
$S=2019$
$S=2023$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu số nguyên dương $x$ sao cho tồn tại số thực $y$ lớn hơn $1$ thỏa mãn $\big(xy^2+x-2y-1)\log y=\log\dfrac{2y-x+3}{x}$?

$3$
$1$
Vô số
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Tìm số nghiệm nguyên của bất phương trình $2023^{2x^2-4x+9}-2023^{x^2+5x+1}-(x-1)(8-x)< 0$.

$7$
$5$
$6$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$, mặt phẳng $(P)\colon3x+y-z-1=0$ và mặt phẳng $(Q)\colon x+3y+z-3=0$. Gọi $(\Delta)$ là đường thẳng đi qua $A$, cắt và vuông góc với giao tuyến của $(P)$ và $(Q)$. Sin của góc tạo bởi đường thẳng $(\Delta)$ và mặt phẳng $(P)$ bằng

$\dfrac{7\sqrt{55}}{55}$
$\dfrac{\sqrt{55}}{55}$
$0$
$\dfrac{-3\sqrt{55}}{11}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x)$ và $G(x)$ là hai nguyên hàm của $f(x)$ thỏa mãn $2F(3)+G(3)=9+2F(-1)+G(-1)$. Khi đó $\displaystyle\displaystyle\int\limits_0^2\big(x^2+f(3-2x)\big)\mathrm{\,d}x$ bằng

$\dfrac{25}{6}$
$\dfrac{7}{6}$
$\dfrac{43}{6}$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x+2)^2(x-1)^5\big(x^2-2(m-6)x+m\big)$ với mọi $x\in\mathbb{R}$. Số giá trị nguyên dương của tham số $m$ để hàm số đã cho có đúng một điểm cực trị là

$7$
$5$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình nón đỉnh $S$, đường cao $SO$, $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho khoảng cách từ $O$ đến $(SAB)$ bằng $\dfrac{a\sqrt{3}}{3}$ và $\widehat{SAO}=30^{\circ}$, $\widehat{SAB}=60^{\circ}$. Độ dài đường sinh của hình nón theo $a$ bằng

$a\sqrt{2}$
$a\sqrt{3}$
$2a\sqrt{3}$
$a\sqrt{5}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong tập hợp số phức, xét phương trình $z^3-(2m+1)z^2+3mz-m=0$ ($m$ là tham số thực). Có bao nhiêu giá trị của $m$ để phương trình đó có ba nghiệm phân biệt $z_1$, $z_2$, $z_3$ thỏa mãn $\big|z_1\big|+\big|z_2\big|+\big|z_3\big|=3$?

$0$
$1$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3\sqrt{3}}{48}$
$\dfrac{a^3\sqrt{3}}{36}$
$\dfrac{a^3\sqrt{3}}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x=5$ và $\displaystyle\displaystyle\int\limits_{0}^{1}g(x)\mathrm{\,d}x=4$ thì $\displaystyle\displaystyle\int\limits_{0}^{1}\big[f(x)-g(x)\big]\mathrm{\,d}x$ bằng

$54$
$20$
$9$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Liên hợp của số phức $z=-1+2i$ là

$\overline{z}=1-2i$
$\overline{z}=2-i$
$\overline{z}=1+2i$
$\overline{z}=-1-2i$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập nghiệm của bất phương trình $\log_3(x-2)\le2$ là

$S=(-\infty;11]$
$S=(2;11]$
$S=(2;8]$
$S=(-\infty;8]$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số $y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-6x+\dfrac{5}{6}$ đồng biến trên khoảng

$(3;+\infty)$
$(-\infty;3)$
$(-2;3)$
$(-2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, khoảng cách từ điểm $M(1;2;3)$ đến mặt phẳng $(P)\colon x+2y+2z-5=0$ bằng

$\mathrm{d}\big(M,(P)\big)=2$
$\mathrm{d}\big(M,(P)\big)=4$
$\mathrm{d}\big(M,(P)\big)=1$
$\mathrm{d}\big(M,(P)\big)=3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho cấp số cộng $\big(u_n\big)$ có số hạng đầu $u_1=2$, công sai $d=5$. Giá trị của $u_4$ bằng

$250$
$12$
$22$
$17$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự