Ngân hàng bài tập

Toán học: GTLN và GTNN

Tìm giá trị lớn nhất \(M\) của hàm số \(f(x)=(6x+3)(5-2x)\) trên đoạn \(\left[-\dfrac{1}{2};\dfrac{3}{2}\right]\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{4}{x}+\dfrac{x}{1-x}\) trên khoảng \((0;1)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{(x+2)(x+8)}{x}\) trên khoảng \((0;+\infty)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+2x+2}{x+1}\) trên khoảng \((-1;+\infty)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị lớn nhất của hàm số \(f(x)=\sqrt{(2x+3)(5-2x)}\) trên đoạn \(\left[-\dfrac{3}{2};\dfrac{5}{2}\right]\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=x+\dfrac{2}{x-1}\) trên khoảng \((1;+\infty)\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $M,\,m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=3\sin x+4\cos x+1$. Khẳng định nào sau đây đúng?

$M=5,\,m=-5$
$M=-8,\,m=-6$
$M=6,\,m=-2$
$M=6,\,m=-4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\sin x-\cos x+3$. Tính $M\cdot m$.

$7$
$-4$
$-7$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là

$4\sqrt{2}$
$2\sqrt{2}$
$4$
$\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập giá trị của hàm số $y=5\sin x-12\cos x$ là

$[-12;5]$
$[-13;13]$
$[-17;17]$
$(-13;13)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Hàm số nào sau đây đạt giá trị nhỏ nhất tại $x=\dfrac{3}{4}$?

$y=4x^2-3x+1$
$y=-x^2+\dfrac{3}{2}x+1$
$y=-2x^2+3x+1$
$y=x^2-\dfrac{3}{2}x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm giá trị nhỏ nhất $m$ của hàm số $y=x^2-4x+5$.

$m=0$
$m=-2$
$m=2$
$m=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm giá trị lớn nhất của hàm số $y=4x-\sqrt{2}x^2$.

$\sqrt{2}$
$2\sqrt{2}$
$2$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm giá trị nhỏ nhất của hàm số $y=x^2-4x+5$.

$0$
$-2$
$2$
$1$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một chất điểm chuyển động có phương trình \(s(t)=t^3-3t^2+9t+2\) (m), trong đó \(t>0\) được tính bằng giây. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

\(t=1\)s
\(t=2\)s
\(t=3\)s
\(t=6\)s
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét các số thực không âm \(x\) và \(y\) thỏa mãn \(2x+y\cdot4^{x+y-1}\geq3\). Giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+4x+6y\) bằng

\(\dfrac{33}{4}\)
\(\dfrac{65}{8}\)
\(\dfrac{49}{8}\)
\(\dfrac{57}{8}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số \(f\left(x\right)=x^3-24x\) trên đoạn \(\left[2;19\right]\) bằng

\(32\sqrt{2}\)
\(-40\)
\(-32\sqrt{2}\)
\(-45\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là

\(9\)
\(10\)
Vô số
\(0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?

\(3\)
\(2\)
\(4\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự