Gọi $M,\,m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=3\sin x+4\cos x+1$. Khẳng định nào sau đây đúng?
| $M=5,\,m=-5$ | |
| $M=-8,\,m=-6$ | |
| $M=6,\,m=-2$ | |
| $M=6,\,m=-4$ |
Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\sin x-\cos x+3$. Tính $M\cdot m$.
| $7$ | |
| $-4$ | |
| $-7$ | |
| $6$ |
Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là
| $4\sqrt{2}$ | |
| $2\sqrt{2}$ | |
| $4$ | |
| $\sqrt{2}$ |
Tìm tập giá trị \(T\) của hàm số $$y=12\sin x-5\cos x.$$
| \(T=[-1;1]\) | |
| \(T=[-7;7]\) | |
| \(T=[-13;13]\) | |
| \(T=[-17;17]\) |
Tìm tập giá trị \(T\) của hàm số $$y=\sin2019x-\cos2019x.$$
| \(T=[-2;2]\) | |
| \(T=[-4038;4038]\) | |
| \(T=\left[-\sqrt{2};\sqrt{2}\right]\) | |
| \(T=\left[0;\sqrt{2}\right]\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
| \(3\) | |
| \(2\) | |
| \(4\) | |
| \(5\) |
Tìm giá trị lớn nhất \(M\) của hàm số $$y=4\sin2x-3\cos2x.$$
| \(M=3\) | |
| \(M=1\) | |
| \(M=5\) | |
| \(M=4\) |
Gọi \(M,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\sin x+\cos x\). Tính \(P=M-m\).
| \(P=4\) | |
| \(P=2\sqrt{2}\) | |
| \(P=\sqrt{2}\) | |
| \(P=2\) |
Tìm tập giá trị \(T\) của hàm số \(y=5-3\sin x\).
| \(T=[-1;1]\) | |
| \(T=[-3;3]\) | |
| \(T=[2;8]\) | |
| \(T=[5;8]\) |
Tìm tập giá trị \(T\) của hàm số \(y=3\cos2x+5\).
| \(T=[-1;1]\) | |
| \(T=[-1;11]\) | |
| \(T=[2;8]\) | |
| \(T=[5;8]\) |
Tìm giá trị nhỏ nhất của hàm số $y=x+\dfrac{3}{x}-4$ trên đoạn $[1;5]$.
| $\dfrac{8}{5}$ | |
| $4-2\sqrt{3}$ | |
| $0$ | |
| $2\sqrt{3}-4$ |
Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là
| $5$ | |
| $2$ | |
| $3$ | |
| $\dfrac{5}{2}$ |
Gọi $M$ và $m$ lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y=2\cos2x+3$. Tính tổng $M+m$.
| $8$ | |
| $6$ | |
| $7$ | |
| $3$ |
Tìm tập giá trị của hàm số $y=\cot x$.
| $\mathbb{R}$ | |
| $\left[-1;1\right]$ | |
| $\mathbb{R}\setminus\left\{k\pi,\,\,k\in\mathbb{Z}\right\}$ | |
| $\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,\,k\in\mathbb{Z}\right\}$ |
Gọi $M,\,m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=3+2\cos^2\left(x+\dfrac{\pi}{3}\right)$. Khi đó $m^2+M^2$ có giá trị là
| $10$ | |
| $34$ | |
| $8$ | |
| $26$ |
Tập giá trị của hàm số $y=\cos x$ là
| $(-1;1)$ | |
| $[-1;1]$ | |
| $\mathbb{R}$ | |
| $[0;1]$ |
Giá trị lớn nhất $M$, giá trị nhỏ nhất $m$ của hàm số $y=\sin^2x+2\sin x+5$ là
| $M=8;\,m=5$ | |
| $M=5;\,m=2$ | |
| $M=8;\,m=4$ | |
| $M=8;\,m=2$ |
Tìm giá trị nhỏ nhất của hàm số $y=2\cos\left(3x-\dfrac{\pi}{5}\right)+3$.
| $-5$ | |
| $1$ | |
| $3$ | |
| $-1$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
| $m=1$ | |
| $m=4$ | |
| $m=13$ | |
| $m=8$ |