Phải luôn luôn học tập chừng nào còn một đều chưa biết
Ngân hàng bài tập

Bài tập tương tự

A

Họ nguyên hàm của hàm số $f(x)=3x\left(x-\mathrm{e}^x\right)$ là

$x^3+(3x-1)\mathrm{e}^x+C$
$x^3-3(x-1)\mathrm{e}^x+C$
$x^3+3(x-1)\mathrm{e}^x+C$
$x^3-(3x+1)\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Kết quả của $I=\displaystyle\displaystyle\int x\mathrm{e}^x\mathrm{\,d}x$ là

$I=x\mathrm{e}^x-\mathrm{e}^x+C$
$I=\dfrac{x^2}{2}\mathrm{e}^x+C$
$I=\dfrac{x^2}{2}\mathrm{e}^x+\mathrm{e}^x+C$
$I=x\mathrm{e}^x+\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho hàm số \(f(x)\) thỏa mãn \(f'(x)=x\mathrm{e}^x\) và \(f(0)=2\). Tính \(f(1)\).

\(f(1)=8-2\mathrm{e}\)
\(f(1)=\mathrm{e}\)
\(f(1)=3\)
\(f(1)=5-2\mathrm{e}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Họ nguyên hàm của hàm số \(f(x)=x\mathrm{e}^{2x}\) là

\(F(x)=2\mathrm{e}^{2x}\left(x-\dfrac{1}{2}\right)+C\)
\(F(x)=2\mathrm{e}^{2x}(x-2)+C\)
\(F(x)=\dfrac{1}{2}\mathrm{e}^{2x}(x-2)+C\)
\(F(x)=\dfrac{1}{2}\mathrm{e}^{2x}\left(x-\dfrac{1}{2}\right)+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết \(\displaystyle\int(x+3)\cdot\mathrm{e}^{-3x+1}\mathrm{\,d}x=-\dfrac{1}{m}\mathrm{e}^{-3x+1}(3x+n)+C\) với \(m,\,n\) là các số nguyên. Tính tổng \(S=m+n\).

\(10\)
\(1\)
\(9\)
\(19\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm nguyên hàm của hàm số \(f(x)=x\mathrm{e}^x\).

\(\displaystyle\int f(x)\mathrm{\,d}x=(x+1)\mathrm{e}^x+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=(x-1)\mathrm{e}^x+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=x\mathrm{e}^x+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=x^2\mathrm{e}^x+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\). Biết \(\cos2x\) là một nguyên hàm của hàm số \(f(x)\cdot\mathrm{e}^x\), họ tất cả các nguyên hàm của hàm số \(f'(x)\mathrm{e}^x\) là

\(-\sin2x+\cos2x+C\)
\(-2\sin2x+\cos2x+C\)
\(-2\sin2x-\cos2x+C\)
\(2\sin2x-\cos2x+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=\mathrm{e}^x+2x$. Khẳng định nào dưới đây đúng?

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+x^2+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x-x^2+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+2x^2+C$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=\mathrm{e}^x+2$. Khẳng định nào dưới đây đúng?

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{x-2}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+2x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x-2x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Một nguyên hàm $F(x)$ của hàm số $f(x)=3^x$ là

$F(x)=3^x\ln3-2022$
$F(x)=\dfrac{3^x}{\ln3}+2020x$
$F(x)=\dfrac{3^x}{\ln3}+2021$
$F(x)=3^x+2019$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tích phân $\displaystyle\displaystyle\int\limits_{0}^{10}x\mathrm{e}^{30x}\mathrm{\,d}x$ bằng

$\dfrac{1}{900}\left(299\mathrm{e}^{300}+1\right)$
$300-900\mathrm{e}^{300}$
$-300+900\mathrm{e}^{300}$
$\dfrac{1}{900}\left(299\mathrm{e}^{300}-1\right)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tính $\displaystyle\displaystyle\int\mathrm{e}^{2x-5}\mathrm{\,d}x$ ta được kết quả nào sau đây?

$\dfrac{\mathrm{e}^{2x-5}}{-5}+C$
$-5\mathrm{e}^{2x-5}+C$
$\dfrac{\mathrm{e}^{2x-5}}{2}+C$
$2\mathrm{e}^{2x-5}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Xét hàm số $f(x)=\mathrm{e}^x+\displaystyle\int\limits_{0}^{1}xf(x)\mathrm{\,d}x$. Giá trị $f\left(\ln5620\right)$ bằng

$5622$
$5620$
$5618$
$5621$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm họ nguyên hàm của hàm số $f\left(x\right)=5^x$.

$\displaystyle\displaystyle\int{f\left(x\right)\mathrm{d}x}=5^x+C$
$\displaystyle\displaystyle\int{f\left(x\right)}\mathrm{d}x=5^x\ln5+C$
$\displaystyle\displaystyle\int{f\left(x\right)}\mathrm{d}x=\dfrac{5^x}{\ln5}+C$
$\displaystyle\displaystyle\int{f\left(x\right)\mathrm{d}x}=\dfrac{5^{x+1}}{x+1}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Họ nguyên hàm của hàm số $f\left(x\right)=\mathrm{e}^{3x}$ là

$3\mathrm{e}^{x}+C$
$\dfrac{1}{3}\mathrm{e}^{x}+C$
$\dfrac{1}{3}\mathrm{e}^{3x}+C$
$3\mathrm{e}^{3x}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Họ nguyên hàm của hàm số $f(x)=x-\mathrm{e}^x$ là

$x^2-\mathrm{e}^{x+1}+C$
$\dfrac{x^2}{2}-\dfrac{\mathrm{e}^{x+1}}{x+1}+C$
$1-\mathrm{e}^x+C$
$\dfrac{x^2}{2}-\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Biết $F(x)=-\dfrac{1}{x^2}$ là một nguyên hàm của hàm số $y=\dfrac{f(x)}{x}$. Tính $\displaystyle\displaystyle\int f'(x)\ln{x}\mathrm{\,d}x$.

$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tính $\displaystyle\displaystyle\int\limits3^{2018x}\mathrm{\,d}x$.

$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{\ln3}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{\ln2018}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{2018\ln3}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2019x}}{2019}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho $F(x)$ là một nguyên hàm của hàm số $f(x)=3x^2-\mathrm{e}^x+1-m$ với $m$ là tham số. Biết rằng $F(0)=2$ và $F(2)=1-\mathrm{e}^2$. Giá trị của $m$ thuộc khoảng

$(3;5)$
$(5;7)$
$(6;8)$
$(4;6)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng

$12$
$16$
$6$
$10$
2 lời giải Sàng Khôn
Lời giải Tương tự