Ngân hàng bài tập

Bài tập tương tự

A

Tính nguyên hàm $\displaystyle\displaystyle\int\dfrac{\left(\ln x+2\right)\mathrm{d}x}{x\ln x}$ bằng cách đặt $t=\ln x$ ta được nguyên hàm nào sau đây?

$\displaystyle\displaystyle\int\dfrac{t\mathrm{\,d}t}{t-2}$
$\displaystyle\displaystyle\int(t+2)\mathrm{\,d}t$
$\displaystyle\displaystyle\int\left(1+\dfrac{2}{t}\right)\mathrm{\,d}t$
$\displaystyle\displaystyle\int\dfrac{(t+2)\mathrm{\,d}t}{t^2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.

$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits_0^1x\sqrt{x^2+4}\mathrm{\,d}x=\dfrac{1}{a}\left(\sqrt{b^3}-c\right)$. Tính $Q=abc$.

$Q=120$
$Q=15$
$Q=-120$
$Q=40$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Họ tất cả các nguyên hàm của hàm số $f(x)=x\left(x^2+1\right)^9$ là

$\dfrac{1}{10}\left(x^2+1\right)^{10}+C$
$\left(x^2+1\right)^{10}$
$\dfrac{1}{2}\left(x^2+1\right)^{10}$
$\dfrac{1}{20}\left(x^2+1\right)^{10}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1;4\}$ có $f'(x)=\dfrac{2x-5}{x^2-5x+4}$ thỏa mãn $f(3)=1$. Giá trị $f(2)$ bằng

$1$
$-1+3\ln2$
$1+3\ln2$
$1-\ln2$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Tính $I=\displaystyle\displaystyle\int\limits_{0}^{a}\dfrac{x^3+x}{\sqrt{x^2+1}}\mathrm{\,d}x$.

$I=\left(a^2+1\right)\sqrt{a^2+1}+1$
$I=\left(a^2+1\right)\sqrt{a^2+1}-1$
$I=\dfrac{1}{3}\left[\left(a^2+1\right)\sqrt{a^2+1}-1\right]$
$I=\dfrac{1}{3}\left[\left(a^2+1\right)\sqrt{a^2+1}+1\right]$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=3x\cos(2x-5)+C$. Tìm khẳng định đúng trong các khẳng định sau:

$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(6x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(2x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(2x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(6x-5)+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hàm số \(f\left(x\right)=\dfrac{x}{\sqrt{x^2+2}}\). Họ tất cả các nguyên hàm của hàm số \(g\left(x\right)=\left(x+1\right)\cdot f'\left(x\right)\) là

\(\dfrac{x^2+2x-2}{2\sqrt{x^2+2}}+C\)
\(\dfrac{x-2}{\sqrt{x^2+2}}+C\)
\(\dfrac{x^2+x+2}{\sqrt{x^2+2}}+C\)
\(\dfrac{x+2}{2\sqrt{x^2+2}}+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính tích phân \(I=\displaystyle\int\limits_{1}^{\mathrm{e}}\dfrac{\sqrt{2+\ln x}}{2x}\mathrm{\,d}x\).

\(\dfrac{3\sqrt{3}+2\sqrt{2}}{3}\)
\(\dfrac{\sqrt{3}+\sqrt{2}}{3}\)
\(\dfrac{\sqrt{3}-\sqrt{2}}{3}\)
\(\dfrac{3\sqrt{3}-2\sqrt{2}}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Nếu \(t=\sqrt{x^2+3}\) thì tích phân \(I=\displaystyle\int\limits_{1}^{2}x\sqrt{x^2+3}\mathrm{\,d}x\) trở thành

\(I=\displaystyle\int\limits_{2}^{\sqrt{7}}t\mathrm{\,d}t\)
\(I=\displaystyle\int\limits_{2}^{7}t^2\mathrm{\,d}t\)
\(I=\displaystyle\int\limits_{2}^{\sqrt{7}}t^2\mathrm{\,d}t\)
\(I=\displaystyle\int\limits_{2}^{\sqrt{7}}t^3\mathrm{\,d}t\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Giả sử hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\cdot\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?

\(3< f(5)<4\)
\(2< f(5)<3\)
\(1< f(5)<2\)
\(4< f(5)<5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Nguyên hàm của hàm số \(f(x)=\dfrac{1}{2\sqrt{2x+1}}\) có dạng

\(\sqrt{2x+1}+C\)
\(\dfrac{1}{(2x+1)\sqrt{2x+1}}+C\)
\(2\sqrt{2x+1}+C\)
\(\dfrac{1}{2}\sqrt{2x+1}+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Hàm số \(y=f(x)\) liên tục trên \([1;4]\) và thỏa mãn \(f(x)=\dfrac{f\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{\ln x}{x}\). Tính tích phân \(I=\displaystyle\int\limits_{3}^{4}f(x)\mathrm{\,d}x\).

\(I=3+2\ln^22\)
\(I=\ln^2\)
\(I=2\ln2\)
\(I=2\ln^22\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(I=\displaystyle\int\limits_0^4x\sqrt{1+2x}\mathrm{\,d}x\) và \(u=\sqrt{2x+1}\). Mệnh đề nào sau đây sai?

\(I=\dfrac{1}{2}\left(\dfrac{u^5}{5}-\dfrac{u^3}{3}\right)\bigg|_1^3\)
\(I=\displaystyle\int\limits_1^3u^2\left(u^2-1\right)\mathrm{\,d}u\)
\(I=\dfrac{1}{2}\displaystyle\int\limits_1^3x^2\left(x^2-1\right)\mathrm{\,d}x\)
\(I=\dfrac{1}{2}\displaystyle\int\limits_1^3u^2\left(u^2-1\right)\mathrm{\,d}u\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tích phân \(I=\displaystyle\int_0^4x\sqrt{x^2+9}\mathrm{\,d}x\). Khi đặt \(t=\sqrt{x^2+9}\) thì tích phân đã cho trở thành

\(I=\displaystyle\int_3^5t\mathrm{\,d}t\)
\(I=\displaystyle\int_0^4t\mathrm{\,d}t\)
\(I=\displaystyle\int_0^4t^2\mathrm{\,d}t\)
\(I=\displaystyle\int_3^5t^2\mathrm{\,d}t\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tích phân \(\displaystyle\int\limits_{0}^{3}\dfrac{x}{1+\sqrt{1+x}}\mathrm{\,d}x\) và đặt \(t=\sqrt{1+x}\). Mệnh đề nào sau đây đúng?

\(\displaystyle\int\limits_{1}^{2}\left(t^2-1\right)\mathrm{\,d}t\)
\(\displaystyle\int\limits_{1}^{2}\left(2t^2+2t\right)\mathrm{\,d}t\)
\(\displaystyle\int\limits_{1}^{2}\left(t^2+t\right)\mathrm{\,d}t\)
\(\displaystyle\int\limits_{1}^{2}\left(2t^2-2t\right)\mathrm{\,d}t\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

\(F(x)\) là một nguyên hàm của hàm số \(f(x)=\cot x\) và \(F\left(\dfrac{\pi}{2}\right)=0\). Giá trị của \(F\left(\dfrac{\pi}{6}\right)\) bằng

\(-\ln\left(\dfrac{\sqrt{3}}{2}\right)\)
\(\ln\left(\dfrac{\sqrt{3}}{2}\right)\)
\(\ln2\)
\(-\ln2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một nguyên hàm \(F(x)\) của hàm số \(f(x)=\dfrac{\mathrm{e}^x}{\mathrm{e}^x+2}\) thỏa \(F(0)=-\ln3\) là

\(\ln\left(\mathrm{e}^x+2\right)+\ln3\)
\(\ln\left(\mathrm{e}^x+2\right)+2\ln3\)
\(\ln\left(\mathrm{e}^x+2\right)-\ln3\)
\(\ln\left(\mathrm{e}^x+2\right)-2\ln3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Nếu \(\displaystyle\int\limits_{0}^{3}\dfrac{x}{1+\sqrt{1+x}}\mathrm{\,d}x=\displaystyle\int\limits_{1}^{2}f(t)\mathrm{\,d}t\), với \(t=\sqrt{1+x}\) thì \(f(t)\) là hàm số nào trong các hàm số dưới đây?

\(f(t)=t^2-1\)
\(f(t)=2t^2+2t\)
\(f(t)=t^2+t\)
\(f(t)=2t^2-2t\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(I=\displaystyle\int\limits_{1}^{2}x\sqrt{4-x^2}\mathrm{\,d}x\) và \(t=\sqrt{4-x^2}\). Khẳng định nào sau đây sai?

\(I=\sqrt{3}\)
\(I=\dfrac{t^2}{2}\bigg|_0^{\sqrt{3}}\)
\(I=\displaystyle\int\limits_{0}^{\sqrt{3}}t^2\mathrm{\,d}t\)
\(I=\dfrac{t^3}{3}\bigg|_0^{\sqrt{3}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự