Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
| \(y=\sqrt{x^2-3x+2}\) | |
| \(y=x^4+x^2+1\) | |
| \(y=\dfrac{x-1}{x+1}\) | |
| \(y=x^3+5x+13\) |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
| $(-\infty;0)$ | |
| $(2;+\infty)$ | |
| $(0;+\infty)$ | |
| $(-1;2)$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
| $12$ | |
| $11$ | |
| $6$ | |
| $5$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x-2)^2(1-x)$ với mọi $x\in\mathbb{R}$. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
| $(1;2)$ | |
| $(1;+\infty)$ | |
| $(2;+\infty)$ | |
| $(-\infty;1)$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:

Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?
| $(1;3)$ | |
| $(-\infty;-3)$ | |
| $(3;4)$ | |
| $(4;5)$ |
Hình bên là đồ thị hàm số $y=f'(x)$.

Hỏi hàm số $y=f(x)$ đồng biến trên khoảng nào dưới đây?
| $(0;1)$ và $(2;+\infty)$ | |
| $(1;2)$ | |
| $(2;+\infty)$ | |
| $(0;1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$ | |
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
| $\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
| $(-\infty;6]$ | |
| $(-\infty;3]$ | |
| $(-\infty;3)$ | |
| $[3;6]$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$, có bảng xét dấu đạo hàm như sau:

Hàm số $y=3f(2x-1)-4x^3+15x^2-18x+1$ đồng biến trên khoảng nào dưới đây?
| $(3;+\infty)$ | |
| $\left(1;\dfrac{3}{2}\right)$ | |
| $\left(\dfrac{5}{2};3\right)$ | |
| $\left(2;\dfrac{5}{2}\right)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.

Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?
| $[-2;0]$ và $[2;+\infty)$ | |
| $(-\infty;-2]$ và $[0;2]$ | |
| $[-2;2]$ | |
| $(-\infty;-2]$ và $[2;+\infty)$ |

Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu như hình bên. Hàm số \(f(3-2x)\) đồng biến trên khoảng nào dưới đây?
| \((3;4)\) | |
| \((2;3)\) | |
| \((0;2)\) | |
| \((-\infty;-3)\) |
Tập hợp các tham số thực \(m\) để hàm số \(y=x^3-3mx^2+3x\) đồng biến trên \((1;+\infty)\) là
| \((-\infty;0]\) | |
| \((-\infty;1]\) | |
| \((-\infty;2)\) | |
| \((-\infty;1)\) |
Số giá trị nguyên của tham số \(m\) để hàm số \(y=x^3-mx^2-2mx\) đồng biến trên \(\mathbb{R}\) là
| \(0\) | |
| \(8\) | |
| \(7\) | |
| \(6\) |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
| \(y=\dfrac{x-1}{x}\) | |
| \(y=2x^3\) | |
| \(y=x^2+1\) | |
| \(y=x^4+5\) |
Cho hàm số \(f\left(x\right)=\dfrac{mx-4}{x-m}\) (\(m\) là tham số thực). Có bao nhiêu giá trị nguyên của \(m\) để hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\)?
| \(5\) | |
| \(4\) | |
| \(3\) | |
| \(2\) |
Cho hàm số \(f(x)\) có bảng xét dấu của đạo hàm như sau:

Hàm số \(y=3f(x+2)-x^3+3x\) đồng biến trên khoảng nào sau đây:
| \((1;+\infty)\) | |
| \((-\infty;-1)\) | |
| \((-1;0)\) | |
| \((0;2)\) |
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x^2-2x,\;\forall x\in\mathbb{R}\). Hàm số \(y=-2f(x)\) đồng biến trên khoảng
| \((0;2)\) | |
| \((2;+\infty)\) | |
| \((-\infty;-2)\) | |
| \((-2;0)\) |
Gọi \(S\) là tập hợp các số nguyên \(m\) để hàm số $$y=\dfrac{x+2m-3}{x-3m+2}$$đồng biến trên khoảng \((-\infty;-14)\). Tính tổng \(T\) của các phần tử trong \(S\).
| \(T=-10\) | |
| \(T=-9\) | |
| \(T=-6\) | |
| \(T=-5\) |
Hàm số \(y=ax^3+bx^2+cx+d\) đồng biến trên \(\mathbb{R}\) khi
| \(\left[\begin{array}{l}a=b,\;c>0\\ b^2-3ac\leq0\end{array}\right.\) | |
| \(\left[\begin{array}{l}a=b=c=0\\ a>0,\;b^2-3ac<0\end{array}\right.\) | |
| \(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\leq0\end{array}\right.\) | |
| \(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\geq0\end{array}\right.\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=\dfrac{mx+1}{x+m}$$đồng biến trên khoảng \((2;+\infty)\).
| \(-2\leq m<-1\) hoặc \(m>1\) | |
| \(m\leq-1\) hoặc \(m>1\) | |
| \(-1< m<1\) | |
| \(m<-1\) hoặc \(m\geq1\) |