Ngân hàng bài tập

Toán học

Chứng minh rằng với mọi \(x\) ta đều có $$x^2+\dfrac{1}{x^2+1}\geq1$$

2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Chứng minh rằng nếu \(|a|\leq1,\,|b|\leq1\) thì $$|a+b|\leq|1+ab|$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho \(a+b\geq0\). Chứng minh rằng $$\dfrac{a+b}{2}\leq\sqrt{\dfrac{a^2+b^2}{2}}$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Chứng minh rằng $$\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\geq\sqrt{(a+c)^2+(b+d)^2}$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Chứng minh rằng $$1+3+6+\cdots+\dfrac{n(n+1)}{2}=\dfrac{n(n+1)(n+2)}{6},\text{ }\forall n\in\Bbb{N}^*$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Chứng minh rằng $$2+5+8+\cdots+(3n-1)=\dfrac{n(3n+1)}{2},\text{ }\forall n\in\Bbb{N}^*$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Chứng minh rằng $$1^2+3^2+5^2+\cdots+(2n-1)^2=\dfrac{n(4n^2-1)}{3},\,\,\forall n\in\Bbb{N}^*$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Chứng minh rằng $$1^2+2^2+3^2+\cdots+n^2=\dfrac{n(n+1)(2n+1)}{6},\text{ }\forall n\in\Bbb{N}^*$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Chứng minh rằng $$1+3+5+\cdots+(2n-1)=n^2,\text{ }\forall n\in\Bbb{N}^*$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Chứng minh rằng $$1+2+3+\cdots+n=\dfrac{n(n+1)}{2},\text{ }\forall n\in\Bbb{N}^*$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tứ diện $ABCD$ và điểm $M$ thuộc miền trong của tam giác $ACD$. Gọi $I,\,J$ lần lượt là hai điểm trên cạnh $BC$ và $BD$ sao cho $IJ$ không song song với $CD$. Gọi $H$ là giao điểm của $IJ$ với $CD$, $K$ là giao điểm của $MH$ với $AC$. Giao tuyến của hai mặt phẳng $(ACD)$ và $(IJM)$ là

$KI$
$KJ$
$MI$
$MH$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho $4$ điểm không đồng phẳng $A,\,B,\,C,\,D$. Gọi $I,\,K$ lần lượt là trung điểm của $AD$ và $BC$. Giao tuyến của $(IBC)$ và $(KAD)$ là

$IK$
$BC$
$AK$
$DK$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M,\,N$ lần lượt là trung điểm $AD$ và $BC$. Giao tuyến của hai mặt phẳng $(SMN)$ và $(SAC)$ là

$SD$
$SO$ ($O$ là tâm của hình bình hành $ABCD$)
$SG$ ($G$ là trung điểm cạnh $AB$)
$SF$ ($F$ là trung điểm cạnh $CD$)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tứ diện $ABCD$. Gọi $G$ là trọng tâm của tam giác $BCD$. Giao tuyến của hai mặt phẳng $(ACD)$ và $(GAB)$ là

$AM$ ($M$ là trung điểm của $AB$)
$AN$ ($N$ là trung điểm của $CD$)
$AH$ ($H$ là hình chiếu của $B$ trên $CD$)
$AK$ ($K$ là hình chiếu của $C$ trên $BD$)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy là hình thang $ABCD$ ($AB\parallel CD$). Khẳng định nào sau đây sai?

$S.ABCD$ có $4$ mặt bên
Giao tuyến của $(SAC)$ và $(SBD)$ là $SO$, với $O=AC\cap BD$
Giao tuyến của $(SAD)$ và $(SBC)$ là $SI$, với $I=AD\cap BC$
Giao tuyến của $(SAB)$ và $(SAD)$ là $BD$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Thiết diện của một tứ diện có thể là

Tam giác
Tứ giác
Tam giác hoặc tứ giác
Ngũ giác
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong các mệnh đề sau, đâu là mệnh đề sai?

Nếu hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa
Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất
Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất
Nếu hai mặt phẳng cùng đi qua ba điểm $A,\,B,\,C$ không thẳng hàng thì trùng nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

Ba điểm phân biệt
Một điểm và một đường thẳng
Hai đường thẳng cắt nhau
Bốn điểm phân biệt
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho $5$ điểm $A,\,B,\,C,\,D,\,E$ trong đó không có $4$ điểm nào đồng phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi $3$ trong $5$ điểm đã cho?

$10$
$12$
$8$
$14$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong mặt phẳng $(\alpha)$, cho bốn điểm $A,\,B,\,C,\,D$ trong đó không có ba điểm nào thẳng hàng. Điểm $S$ không thuộc mặt phẳng $(\alpha)$. Có bao nhiêu mặt phẳng tạo bởi $S$ và $2$ trong $4$ điểm nói trên?

$4$
$5$
$6$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự