Biết rằng $b,\,c$ là hai đường thẳng cắt nhau và cùng nằm trong mặt phẳng $(\alpha)$. Nếu đường thẳng $a$ vuông góc với cả $b$ và $c$ thì
| $a\perp(\alpha)$ | |
| $a\parallel(\alpha)$ | |
| $a\subset(\alpha)$ | |
| $a,\,b,\,c$ đồng quy |
Biết rằng đường thẳng $a$ vuông góc với mặt phẳng $(\alpha)$ và đường thẳng $b$ nằm trên mặt phẳng $(\alpha)$. Kết luận nào sau đây là đúng?
| $a\perp b$ | |
| $a\parallel b$ | |
| $a,\,b$ chéo nhau | |
| $a,\,b$ cắt nhau |
Cho tam giác $ABC$. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác $ABC$?
| $1$ | |
| $3$ | |
| $4$ | |
| $2$ |
Trong không gian cho $4$ điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
| $6$ | |
| $3$ | |
| $4$ | |
| $2$ |
Kí hiệu nào sau đây là tên của mặt phẳng?
| $(P)$ | |
| $Q$ | |
| $AB$ | |
| $a$ |
Cho tam giác $ABC$, lấy điểm $I$ trên cạnh $AC$ kéo dài (hình bên).

Mệnh đề nào sau đây là mệnh đề sai?
| $(ABC)\equiv(BIC)$ | |
| $A\in(ABC)$ | |
| $BI\in(ABC)$ | |
| $I\in(ABC)$ |
Trong các mệnh đề sau, mệnh đề nào sai?
| Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau | |
| Ba điểm không thẳng hàng cùng thuộc một mặt phẳng duy nhất | |
| Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng sẽ có một đường thẳng chung đi qua điểm chung ấy | |
| Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau cho trước |
Trong các mệnh đề sau, đâu là mệnh đề sai?
| Nếu hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa | |
| Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất | |
| Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất | |
| Nếu hai mặt phẳng cùng đi qua ba điểm $A,\,B,\,C$ không thẳng hàng thì trùng nhau |
Cho $5$ điểm $A,\,B,\,C,\,D,\,E$ trong đó không có $4$ điểm nào đồng phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi $3$ trong $5$ điểm đã cho?
| $10$ | |
| $12$ | |
| $8$ | |
| $14$ |
Trong mặt phẳng $(\alpha)$, cho bốn điểm $A,\,B,\,C,\,D$ trong đó không có ba điểm nào thẳng hàng. Điểm $S$ không thuộc mặt phẳng $(\alpha)$. Có bao nhiêu mặt phẳng tạo bởi $S$ và $2$ trong $4$ điểm nói trên?
| $4$ | |
| $5$ | |
| $6$ | |
| $8$ |
Trong không gian, cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
| $6$ | |
| $4$ | |
| $3$ | |
| $2$ |
Trong các khẳng định sau, khẳng định nào đúng?
| Qua 2 điểm phân biệt có duy nhất một mặt phẳng | |
| Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng | |
| Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng | |
| Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng |
Tìm mệnh đề sai trong các mệnh đề sau đây:
| Nếu hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì chúng song song với nhau | |
| Nếu hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau | |
| Nếu hai mặt phẳng có một điểm chung thì còn có vô số điểm chung khác nữa | |
| Nếu một đường thẳng cắt một trong hai mặt phẳng song song với nhau thì sẽ cắt mặt phẳng còn lại |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
| $45^\circ$ | |
| $90^\circ$ | |
| $30^\circ$ | |
| $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
| $60^\circ$ | |
| $90^\circ$ | |
| $30^\circ$ | |
| $45^\circ$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?
| $SI$ | |
| $SA$ | |
| $SB$ | |
| $SC$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
| $AB\perp BC$ | |
| $SA\perp AC$ | |
| $SA\perp(ABC)$ | |
| $\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
| $\widehat{SCA}$ | |
| $\widehat{SCB}$ | |
| $\widehat{SAC}$ | |
| $\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
| $\widehat{SBA}$ | |
| $\widehat{SBC}$ | |
| $\widehat{SAB}$ | |
| $\widehat{ASB}$ |
Cho hình lăng trụ có cạnh bên vuông góc với mặt đáy, khi đó các mặt bên của lăng trụ là hình gì?
| Hình chữ nhật | |
| Hình bình hành | |
| Hình thoi | |
| Hình vuông |