Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $I$ là trung điểm $SA$. Thiết diện của hình chóp $S.ABCD$ cắt bởi $(IBC)$ là
| Tam giác $IBC$ | |
| Hình thang $IGBC$ ($G$ là trung điểm $SB$) | |
| Hình thang $IJCB$ ($J$ là trung điểm $SD$) | |
| Tứ giác $IBCD$ |
Trong các mệnh đề sau mệnh đề nào sai?
| Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng | |
| Dùng nét đứt để biểu diễn cho đường bị che khuất | |
| Hình biểu diễn của đường thẳng là đường thẳng | |
| Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau |
Cho hình chóp $S.ABCD$ với đáy là tứ giác $ABCD$ có các cạnh đối không song song. Giả sử $AC\cap BD=O$, $AD\cap BC=I$. Giao tuyến của hai mặt phẳng $(SAC)$ và $(SBD)$ là
| $SC$ | |
| $SB$ | |
| $SI$ | |
| $SO$ |
Cho điểm $A$ thuộc mặt phẳng $(P)$, mệnh đề nào sau đây đúng?
| $A\subset(P)$ | |
| $A\in P$ | |
| $A\subset P$ | |
| $A\in(P)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $d$ là giao tuyến của hai mặt phẳng $(SAD)$ và $(SBC)$. Khẳng định nào sau đây đúng?
| $d$ qua $S$ và song song với $BC$ | |
| $d$ qua $S$ và song song với $DC$ | |
| $d$ qua $S$ và song song với $AB$ | |
| $d$ qua $S$ và song song với $BD$ |
Cho hai đường thẳng $a$ và $b$ chéo nhau. Có bao nhiêu mặt phẳng chứa $a$ và song song với $b$?
| $0$ | |
| $1$ | |
| $2$ | |
| Vô số |
Cho hình chóp tứ giác $S.ABCD$. Gọi $M$ và $N$ lần lượt là trung điểm của $SA$ và $SC$. Khẳng định nào sau đây đúng?
| $MN\parallel(ABCD)$ | |
| $MN\parallel(SAB)$ | |
| $MN\parallel(SCD)$ | |
| $MN\parallel(SBC)$ |
Trong mặt phẳng $(\alpha)$, cho hình bình hành $ABCD$ tâm $O$, $S$ là một điểm không thuộc $(\alpha)$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $BC$, $CD$ và $SO$. Đường thẳng $MN$ cắt $AB$, $AC$ và $AD$ tại $M_1$, $N_1$ và $O_1$. Nối $N_1P$ cắt $SA$ tại $P_1$, nối $M_1P_1$ cắt $SB$ tại $M_2$, nối $O_1P_1$ cắt $SD$ tại $N_2$. Khi đó thiết diện của mặt phẳng $(MNP)$ với hình chóp $S.ABCD$ là
| Tam giác $MNP$ | |
| Tứ giác $BM_2N_2N$ | |
| Ngũ giác $NMM_2P_1N_2$ | |
| Tam giác $P_1M_1N_1$ |
Cho $S$ là một điểm không thuộc mặt hình thang $ABCD$ ($AB\parallel CD$ và $AB>CD$). Gọi $I$ là giao điểm của $AD$ và $BC$. Khi đó giao tuyến của hai mặt phẳng $(SAD)$ và $(SCB)$ là
| $BI$ | |
| $SD$ | |
| $SC$ | |
| $SI$ |
Trong các mệnh đề sau, mệnh đề nào sai?
| Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau | |
| Ba điểm không thẳng hàng cùng thuộc một mặt phẳng duy nhất | |
| Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng sẽ có một đường thẳng chung đi qua điểm chung ấy | |
| Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau cho trước |
Cho hai đường thẳng $a$ và $b$ cùng song song với $(P)$. Khẳng định nào sau đây là đúng?
| $a$ và $b$ chéo nhau | |
| Chưa đủ điều kiện để kết luận vị trí tương đối của $a$ và $b$ | |
| $a\parallel b$ | |
| $a$ và $b$ cắt nhau |
Trong mặt phẳng $(\alpha)$, cho hình bình hành $ABCD$ tâm $O$, $S$ là một điểm không thuộc $(\alpha)$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $BC$, $CD$ và $SO$. Đường thẳng $MN$ cắt $AB$, $AC$ và $AD$ tại $M_1$, $N_1$ và $O_1$. Nối $N_1P$ cắt $SA$ tại $P_1$, nối $M_1P_1$ cắt $SB$ tại $M_2$, nối $O_1P_1$ cắt $SD$ tại $N_2$. Khi đó giao tuyến của $(MNP)$ với $(SAB)$ là
| $P_1N_2$ | |
| $P_1M_2$ | |
| $P_1C$ | |
| $M_1N_1$ |
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
| Hai đường thẳng cắt nhau | |
| Ba điểm | |
| Một điểm và một đường thẳng | |
| Bốn điểm |
Trong mặt phẳng $(\alpha)$, cho tứ giác $ABCD$ có $AB$ cắt $CD$ tại $E$, $AC$ cắt $BD$ tại $F$, $S$ là điểm không thuộc $(\alpha)$. Gọi $M,\,N$ lần lượt là giao điểm của $EF$ với $AD$ và $BC$. Giao tuyến của $(SEF)$ với $(SAD)$ là
| $DN$ | |
| $MN$ | |
| $SM$ | |
| $SN$ |
Cho hình chóp $S.ABCD$ có các cặp cạnh đối không song song. Gọi $I$ là giao điểm $AB$ và $DC$. Đường thẳng $SI$ là giao tuyến của cặp mặt phẳng nào?
| $(SAD)$ và $(SBC)$ | |
| $(SAB)$ và $(SCD)$ | |
| $(SAD)$ và $(SCD)$ | |
| $(SAC)$ và $(SBD)$ |
Cho tam giác $ABC$, lấy điểm $I$ trên cạnh $AC$ kéo dài (hình bên).

Mệnh đề nào sau đây là mệnh đề sai?
| $(ABC)\equiv(BIC)$ | |
| $A\in(ABC)$ | |
| $BI\in(ABC)$ | |
| $I\in(ABC)$ |
Kí hiệu nào sau đây là tên của mặt phẳng?
| $(P)$ | |
| $Q$ | |
| $AB$ | |
| $a$ |
Trong không gian cho $4$ điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
| $6$ | |
| $3$ | |
| $4$ | |
| $2$ |
Cho tam giác $ABC$. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác $ABC$?
| $1$ | |
| $3$ | |
| $4$ | |
| $2$ |
Trong $(\alpha)$, cho tứ giác $ABCD$ có $AB$ cắt $CD$ tại $E$, $AC$ cắt $BD$ tại $F$, $S$ là điểm không thuộc $(\alpha)$. Giao tuyến của $(SAB)$ và $(SCD)$ là
| $AC$ | |
| $SD$ | |
| $CD$ | |
| $SE$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $N,\,P$ lần lượt là trung điểm của các cạnh $BC,\,AD$; $K$ là giao $BP$ và $AN$. Khi đó $SK$ là giao tuyến của mặt phẳng $(SAN)$ và mặt phẳng nào sau đây?
| $(SPC)$ | |
| $(SCD)$ | |
| $(SBC)$ | |
| $(SBP)$ |
Cho hai đường thẳng chéo nhau $a$ và $b$. Lấy $A,\,B$ thuộc $a$ và $C,\,D$ thuộc $b$. Khẳng định nào sau đây đúng khi nói về hai đường thẳng $AD$ và $BC$?
| Cắt nhau | |
| Có thể song song hoặc cắt nhau | |
| Chéo nhau | |
| Song song nhau |
Cho tứ diện $ABCD$. $M$ là điểm nằm trong tam giác $ABC$, $(\alpha)$ qua $M$ và song song với $AB$ và $CD$. Thiết diện của $ABCD$ cắt bởi $(\alpha)$ là
| Tam giác | |
| Hình bình hành | |
| Hình vuông | |
| Hình chữ nhật |
Cho tứ diện $ABCD$, $M$ là trung điểm của $AB$, $N$ là điểm trên $AC$ mà $AN=\dfrac{1}{4}AC$, $P$ là điểm trên đoạn $AD$ mà $AP=\dfrac{2}{3}AD$. Gọi $E$ là giao điểm của $MP$ và $BD$, $F$ là giao điểm của $MN$ và $BC$. Khi đó giao tuyến của $(BCD)$ và $(MPC)$ là
| $CE$ | |
| $MF$ | |
| $NE$ | |
| $CP$ |
Cho tứ diện $ABCD$, gọi $E$ là trung điểm của $AB$. Giao tuyến của hai mặt phẳng $(ECD)$ và $(ABC)$ là
| $ED$ | |
| $EC$ | |
| $EB$ | |
| $EA$ |
Cho tứ diện $ABCD$. Gọi $M$ và $N$ lần lượt là trung điểm của $AC$ và $BC$. $P$ là điểm di động trên đoạn $BD$. Mặt phẳng $(MNP)$ cắt $AD$ tại $Q$.