Gọi $(d)$ là tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(1;0)$. Tìm hệ số góc của $(d)$.
| $-2$ | |
| $2$ | |
| $1$ | |
| $0$ |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^4-3x^2+1\) tại các điểm có tung độ bằng \(5\) là
| \(y=20x-35\) | |
| \(y=-20x-35\) và \(y=20x+35\) | |
| \(y=20x-35\) và \(y=-20x-35\) | |
| \(y=-20x+35\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^4+2x^2-1\) tại điểm có hoành độ bằng \(1\) là
| \(y=-8x-6\) | |
| \(y=8x-6\) | |
| \(y=-8x+10\) | |
| \(y=8x+10\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^4-3x^2+4\) tại điểm \(A(1;2)\) là
| \(y=3x+5\) | |
| \(y=2x+4\) | |
| \(y=-2x+4\) | |
| \(y=-2x\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x+1}{x-5}\) tại điểm \(A(-1;0)\) có hệ số góc bằng
| \(\dfrac{1}{6}\) | |
| \(-\dfrac{1}{6}\) | |
| \(\dfrac{6}{25}\) | |
| \(-\dfrac{6}{25}\) |
Tìm hệ số góc \(k\) của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoành độ \(\dfrac{1}{2}\).
| \(k=0\) | |
| \(k=1\) | |
| \(k=\dfrac{1}{4}\) | |
| \(k=-\dfrac{1}{2}\) |
Cho hàm số $y=\dfrac{-x+1}{2x-1}$ có đồ thị $(\mathscr{C})$ và đường thẳng $(d)\colon y=x+m$. Với mọi giá trị thực của $m$ đường thẳng $(d)$ luôn cắt đồ thị $(\mathscr{C})$ tại hai điểm phân biệt $A$ và $B$. Gọi $k_1,\,k_2$ lần lượt là hệ số góc của các tiếp tuyến với $(\mathscr{C})$ tại $A$ và $B$. Giá trị nhỏ nhất của $T=k_1^{2022}+k_2^{2022}$ bằng
| $\dfrac{1}{2}$ | |
| $2$ | |
| $\dfrac{2}{3}$ | |
| $1$ |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.
| $y=-\dfrac{1}{3}x+\dfrac{1}{3}$ | |
| $y=\dfrac{1}{3}x+\dfrac{11}{3}$ | |
| $y=\dfrac{1}{3}x-\dfrac{11}{3}$ | |
| $y=\dfrac{1}{3}x+\dfrac{1}{3}$ |
Viết phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(-2;6)$.
| $y=-11x-16$ | |
| $y=-11x-28$ | |
| $y=-11x+28$ | |
| $y=-11x+16$ |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-3x^2+x+3$ $(\mathscr{P})$ tại điểm $M(1;1)$.
| $y=-5x+6$ | |
| $y=5x-6$ | |
| $y=-5x-6$ | |
| $y=5x+6$ |
Gọi $M(a;b)$ là điểm thuộc đồ thị hàm số $y=f(x)=x^3-3x^2+2$ $(\mathscr{C})$ sao cho tiếp tuyến của $(\mathscr{C})$ tại điểm $M$ có hệ số góc nhỏ nhất. Tính $a+b$.
| $-3$ | |
| $0$ | |
| $1$ | |
| $2$ |
Tiếp tuyến của đồ thị hàm số $y=x^3-2x^2$ tại điểm $M\left(1;-1\right)$ có hệ số góc bằng
| $-1$ | |
| $1$ | |
| $7$ | |
| $5$ |
Cho hàm số $y=f(x)$ có đồ thị $\left(\mathscr{C}\right)$ và đạo hàm $f'(2)=6$. Hệ số góc của tiếp tuyến của $\left(\mathscr{C}\right)$ tại điểm $M\left(2;f\left(2\right)\right)$ bằng
| $6$ | |
| $3$ | |
| $2$ | |
| $12$ |
Viết phương trình tiếp tuyến của đồ thị \(y=\dfrac{x-1}{x+1}\), biết tiếp tuyến có hệ số góc là \(\dfrac{1}{2}\).
| \(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) | |
| \(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) | |
| \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) | |
| \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |
Viết phương trình tiếp tuyến của đồ thị hàm số \(y=x^3-3x^2\), biết tiếp tuyến có hệ số góc bằng \(-3\).
| \(y=-3x-2\) | |
| \(y=-3\) | |
| \(y=-3x-5\) | |
| \(y=-3x+1\) |
Phương trình tiếp tuyến với đồ thị hàm số \(y=\dfrac{2x-4}{x-4}\) tại điểm có tung độ bằng \(3\) là
| \(x+4y-20=0\) | |
| \(x+4y-5=0\) | |
| \(4x+y-2=0\) | |
| \(4x+y-5=0\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^3-x^2+x+1\) tại điểm có tung độ bằng \(2\) là
| \(y=2x\) | |
| \(y=9x-11\) | |
| \(y=54x+32\) | |
| \(y=2x+4\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{4}{x-1}\) tại điểm có hoành độ \(x_0=-1\) là
| \(y=-x-3\) | |
| \(y=x-1\) | |
| \(y=-x+2\) | |
| \(y=-x-1\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^3+3x^2-2\) tại điểm có hoành độ bằng \(x_0=-3\) là
| \(y=30x+25\) | |
| \(y=9x-25\) | |
| \(y=30x-25\) | |
| \(y=9x+25\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x-1}{x+1}\) tại điểm \(M(0;-1)\) là
| \(y=3x+1\) | |
| \(y=3x-1\) | |
| \(y=-3x-1\) | |
| \(y=-3x+1\) |