Ngân hàng bài tập

Bài tập tương tự

C

Với $m,\,n$ là hai số thực bất kỳ, $a$ là số thực dương tùy ý. Khẳng định nào sau đây sai?

$a^{m\cdot n}=\big(a^n\big)^m$
$a^{m-n}=\dfrac{a^m}{a^n}$
$a^{m+n}=a^m+a^n$
$a^{m\cdot n}=\big(a^m\big)^n$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Một khối trụ có khoảng cách giữa hai đáy, độ dài đường sinh và bán kính đường tròn đáy lần lượt là $h$, $\ell$, $r$. Khi đó công thức tính diện tích toàn phần của khối trụ là

$S_{\text{tp}}=\pi r(\ell+r)$
$S_{\text{tp}}=2\pi r(\ell+r)$
$S_{\text{tp}}=2\pi r(\ell+2r)$
$S_{\text{tp}}=\pi r(2\ell+r)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số thực $a,\,b>1$. Khẳng định nào dưới đây đúng?

$\log(a+b)=\log a+\log b$
$\log(ab)=\log a+\log b$
$\log(a-b)=\log a-\log b$
$\log\left(\dfrac{a}{b}\right)=\log a+\log b$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Với $a,\,b,\,c$ là các số thực dương và $a\neq1$ thì $\log_a(b.c)$ bằng

$\log_ac-\log_ab$
$\log_ab-\log_ac$
$\log_ab\cdot\log_ac$
$\log_ab+\log_ac$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Thể tích khối lăng trụ có chiều cao là $h$ và diện tích đáy là $B$ bằng

$Bh$
$\dfrac{1}{3}Bh$
$3Bh$
$\dfrac{4}{3}Bh$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, mặt phẳng $(Oxz)$ có phương trình là

$x=0$
$z=0$
$x+y+z=0$
$y=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $f(x)$ là hàm số liên tục trên $[a;b]$ và $F(x)$ là một nguyên hàm của $f(x)$. Khẳng định nào sau đây đúng?

$\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=F(x)\bigg|_a^b=F(b)-F(a)$
$\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=f(x)\bigg|_a^b=f(b)-f(a)$
$\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=F(x)\bigg|_a^b=-F(b)-F(a)$
$\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=F(x)\bigg|_a^b=F(a)-F(b)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai hàm số $u=u(x)$, $v=v(x)$ có đạo hàm liên tục. Khi đó, $\displaystyle\displaystyle\int u\mathrm{d}v$ bằng

$uv-\displaystyle\displaystyle\int v\mathrm{d}u$
$uv+\displaystyle\displaystyle\int v\mathrm{d}u$
$-uv-\displaystyle\displaystyle\int v\mathrm{d}u$
$-uv+\displaystyle\displaystyle\int v\mathrm{d}u$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho vectơ $\overrightarrow{a}=-3\overrightarrow{j}+4\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là

$(0;-4;3)$
$(-3;0;4)$
$(0;3;4)$
$(0;-3;4)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)$ và $g(x)$ cùng liên tục trên $\mathbb{R}$. Khẳng định nào đúng?

$\displaystyle\displaystyle\int\big[f(x)\cdot g(x)\big]\mathrm{\,d}x=\left(\displaystyle\int f(x)\mathrm{\,d}x\right)\cdot\left(\displaystyle\int g(x)\mathrm{\,d}x\right)$
$\displaystyle\displaystyle\int\big(f(x)-g(x)\big)\mathrm{\,d}x=\displaystyle\int g(x)\mathrm{\,d}x-\displaystyle\int f(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\big[f(x)+g(x)\big]\mathrm{\,d}x=\displaystyle\int f(x)\mathrm{\,d}x+\displaystyle\int g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\left[\dfrac{f(x)}{g(x)}\right]\mathrm{\,d}x=\dfrac{\displaystyle\int f(x)\mathrm{\,d}x}{\displaystyle\int g(x)\mathrm{\,d}x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$, $y=g(x)$ liên tục trên $[a;b]$. Gọi $H$ là hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$, $y=g(x)$, trục hoành và hai đường thẳng $x=a$, $x=b$ ($a< b$). Diện tích của hình $H$ được tính theo công thức nào sau đây?

$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)-g(x)\big|\mathrm{\,d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)-g(x)\big|\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{\,d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình lăng trụ có cạnh bên vuông góc với mặt đáy, khi đó các mặt bên của lăng trụ là hình gì?

Hình chữ nhật
Hình bình hành
Hình thoi
Hình vuông
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Biết rằng $b,\,c$ là hai đường thẳng cắt nhau và cùng nằm trong mặt phẳng $(\alpha)$. Nếu đường thẳng $a$ vuông góc với cả $b$ và $c$ thì

$a\perp(\alpha)$
$a\parallel(\alpha)$
$a\subset(\alpha)$
$a,\,b,\,c$ đồng quy
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Biết rằng đường thẳng $a$ vuông góc với mặt phẳng $(\alpha)$ và đường thẳng $b$ nằm trên mặt phẳng $(\alpha)$. Kết luận nào sau đây là đúng?

$a\perp b$
$a\parallel b$
$a,\,b$ chéo nhau
$a,\,b$ cắt nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình nón có đường kính đáy $2r$ và độ dải đường sinh $\ell$. Diện tích xung quanh của hình nón đã cho bằng

$2\pi r\ell$
$\dfrac{2}{3}\pi r\ell^2$
$\pi r\ell$
$\dfrac{1}{3}\pi r^2\ell$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, góc giữa hai mặt phẳng $(Oxy)$ và $(Oyz)$ bằng

$30^{\circ}$
$45^{\circ}$
$60^{\circ}$
$90^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu $\displaystyle\displaystyle\int_{-1}^4f(x)\mathrm{\,d}x=2$ và $\displaystyle\displaystyle\int_{-1}^4g(x)\mathrm{\,d}x=3$ thì $\displaystyle\displaystyle\int_{-1}^4\big[f(x)+g(x)\big]\mathrm{\,d}x$ bằng

$5$
$6$
$1$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho 5 khẳng định sau về hình lăng trụ. Hỏi có bao nhiêu khẳng định đúng?

  • Hình lăng trụ có tất cả các mặt bên đều là hình bình hành;
  • Hình lăng trụ có 2 đáy là những đa giác bằng nhau và nằm trên 2 mặt phẳng song song;
  • Hình lăng trụ có tất cả các cạnh bên song song và bằng nhau;
  • Hình lăng trụ có 2 đáy đều là hình bình hành;
  • Hình lăng trụ có tất cả các mặt bên đều là những hình chữ nhật.
$4$
$5$
$3$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hai mặt phẳng $(P)$ và $(Q)$ thỏa mãn điều kiện nào sau đây thì $(P)$ và $(Q)$ song song với nhau?

$(P)$ chứa 2 đường thẳng $a,\,b$ song song mà $a,\,b$ cùng song song với $(Q)$
$(P)$ chứa 2 đường thẳng $a,\,b$ cắt nhau mà $a,\,b$ cùng song song với $(Q)$
$(P)$ chứa 2 đường thẳng $a,\,b$ mà $a,\,b$ cùng song song với $(Q)$
$(P)$ chứa 1 đường thẳng $a$ mà $a$ song song với $(Q)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $\lim u_n=L$, $\lim v_n=M$, với $L,\,M\in\mathbb{R}$ và $M\ne0$. Chọn khẳng định sai.

$\lim\big(u_n\cdot v_n\big)=L\cdot M$
$\lim\dfrac{u_n}{v_n}=\dfrac{L}{M}$
$\lim\big(u_n+v_n\big)=L+M$
$\lim\big(v_n-u_n\big)=L-M$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự