Đồ thị hàm số \(y=x^3-2mx^2+m^2x+n\) có tọa độ điểm cực tiểu là \((1;3)\). Khi đó \(m+n\) bằng
| \(4\) | |
| \(3\) | |
| \(2\) | |
| \(1\) |
Gọi $x_1,\,x_2$ là các điểm cực trị của hàm số $y=x^3-2x^2-7x+1$. Tính $x_1^2+x_2^2$.
| $\dfrac{44}{9}$ | |
| $\dfrac{16}{3}$ | |
| $\dfrac{28}{3}$ | |
| $\dfrac{58}{9}$ |
Gọi $x_1,\,x_2$ là các điểm cực trị của hàm số $y=x^3-2x^2-7x+1$. Tính $x_1^2+x_2^2$.
| $\dfrac{44}{9}$ | |
| $\dfrac{16}{3}$ | |
| $\dfrac{28}{3}$ | |
| $\dfrac{58}{9}$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=4x^3+mx^2-3x$. Tìm các giá trị của tham số $m$ sao cho $x_1+4x_2=0$.
| $m=0$ | |
| $m=\pm\dfrac{9}{2}$ | |
| $m=\pm\dfrac{3}{2}$ | |
| $m=\pm\dfrac{1}{2}$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=x^3-3mx^2+3\big(m^2-1\big)x-m^3+m$. Tìm các giá trị của tham số $m$ sao cho $x_1^2+x_2^2-x_1x_2=7$.
| $m=0$ | |
| $m=\pm\dfrac{9}{2}$ | |
| $m=\pm\dfrac{1}{2}$ | |
| $m=\pm2$ |
Gọi $S$ là tập hợp các giá trị nguyên để hàm số $y=\dfrac{x^3}{3}-(m+1)x^2+(m-2)x+2m-3$ đạt cực trị tại hai điểm $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=18$. Tính tổng $P$ của tất cả các giá trị $m$ trong $S$.
| $P=-4$ | |
| $P=1$ | |
| $P=-\dfrac{3}{2}$ | |
| $P=-5$ |
Đồ thị hàm số $y=x^3-3x^2-9x+1$ có hai điểm cực trị là $A$ và $B$. Điểm nào sau đây thuộc đường thẳng $AB$?
| $M(0;-1)$ | |
| $Q(-1;10)$ | |
| $P(1;0)$ | |
| $N(1;-10)$ |
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y=-2x^3+3x^2+1$.
| $y=x+1$ | |
| $y=-x+1$ | |
| $y=x-1$ | |
| $y=-x-1$ |
Biết đồ thị hàm số $y=x^3-3x+1$ có hai điểm cực trị $A,\,B$. Khi đó đường thẳng $AB$ có phương trình
| $y=2x-1$ | |
| $y=x-2$ | |
| $y=-x+2$ | |
| $y=-2x+1$ |
Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng
| $2\ln3$ | |
| $\ln3$ | |
| $\ln18$ | |
| $2\ln2$ |
Gọi $M(a;b)$ là điểm thuộc đồ thị hàm số $y=f(x)=x^3-3x^2+2$ $(\mathscr{C})$ sao cho tiếp tuyến của $(\mathscr{C})$ tại điểm $M$ có hệ số góc nhỏ nhất. Tính $a+b$.
| $-3$ | |
| $0$ | |
| $1$ | |
| $2$ |
Điểm cực tiểu của đồ thị hàm số \(y=-x^3+x^2+5x-5\) là điểm nào?
| \((-1;-8)\) | |
| \((1;0)\) | |
| \((0;-5)\) | |
| \(\left(\dfrac{5}{3};\dfrac{40}{27}\right)\) |
Gọi \(M,\,N\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=x^3-3x^2+1\) trên đoạn \([1;2]\). Khi đó tổng \(M+N\) bằng
| \(2\) | |
| \(-2\) | |
| \(0\) | |
| \(-4\) |
Với giá trị nào của tham số \(m\) thì hàm số \(y=x^3-mx^2+(2m-3)x-3\) đạt cực đại tại \(x=1\)?
| \(m\leq3\) | |
| \(m=3\) | |
| \(m<3\) | |
| \(m>3\) |
Hàm số \(y=x^3-(m+2)x+m\) đạt cực tiểu tại \(x=1\) khi
| \(m=-1\) | |
| \(m=2\) | |
| \(m=-2\) | |
| \(m=1\) |
Cho hàm số \(y=\dfrac{x^3}{3}-(m+1)x^2+mx-2\). Tìm \(m\) để hàm số đạt cực đại tại \(x=-1\).
| \(m=-1\) | |
| \(m=1\) | |
| Không có \(m\) | |
| \(m=-2\) |
Cho hàm số \(y=x^3+3mx^2-2x+1\). Hàm số có điểm cực đại là \(x=-1\), khi đó giá trị của \(m\) thỏa mãn là
| \(m\in(-1;0)\) | |
| \(m\in(0;1)\) | |
| \(m\in(-3;-1)\) | |
| \(m\in(1;3)\) |
Tập hợp các giá trị của tham số \(m\) để hàm số \(y=\dfrac{x^3}{3}-6x^2+(m-2)x+11\) có \(2\) điểm cực trị trái dấu.
| \((-\infty;38)\) | |
| \((-\infty;2)\) | |
| \((-\infty;2]\) | |
| \((2;38)\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y=x^3-3x^2+mx+1\) có \(2\) điểm cực trị.
| \(m\leq3\) | |
| \(m>3\) | |
| \(m>-3\) | |
| \(m<3\) |
Biết rằng đồ thị hàm số \(y=x^3-3x+1\) có hai điểm cực trị \(A,\,B\). Khi đó đường thẳng \(AB\) có phương trình là
| \(y=2x-1\) | |
| \(y=x-2\) | |
| \(y=-x+2\) | |
| \(y=1-2x\) |