Hai bất phương trình được gọi là tương đương nếu có cùng
| Tập nghiệm | |
| Điều kiện | |
| Số nghiệm | |
| Số ẩn |
Tập nghiệm của bất phương trình \(|2x-1|\leq x\) là
| \(\left(\dfrac{1}{3};1\right)\) | |
| \(\left[\dfrac{1}{3};1\right]\) | |
| \(\mathbb{R}\) | |
| \(\varnothing\) |
Tìm số nghiệm nguyên của bất phương trình $$2\log_{\tfrac{1}{2}}|x-1|<\log_{\tfrac{1}{2}}x-1$$
| \(1\) | |
| \(3\) | |
| \(2\) | |
| Vô số |
Bất phương trình nào dưới đây là bất phương trình bậc nhất hai ẩn?
| \(2x-5y+3z\leq0\) | |
| \(3x^2+2x-4>0\) | |
| \(2x^2+5y>3\) | |
| \(2x+3y<5\) |
Tập nghiệm của bất phương trình \(\left|2x-1\right|\leq1\) là
| \(S=(0;1)\) | |
| \(S=\{0;1\}\) | |
| \(S=[0;1]\) | |
| \(S=(-\infty;0]\cup[1;+\infty)\) |
Tập nghiệm của bất phương trình \(\left|2x^2-5x+3\right|+\left|x^2-1\right|\leq0\) là
| \(\left[\dfrac{2}{3};4\right]\) | |
| \(\left[\dfrac{2}{3};4\right]\setminus\{1\}\) | |
| \(\varnothing\) | |
| \(\{1\}\) |
Với giá trị nào của \(x\) thì biểu thức \(f(x)=\left|2x-5\right|-3\) không dương?
| \(x<1\) | |
| \(x=\dfrac{5}{2}\) | |
| \(x=0\) | |
| \(1\leq x\leq4\) |
Bất phương trình \(\left|x-5\right|\leq4\) có bao nhiêu nghiệm nguyên?
| \(10\) | |
| \(8\) | |
| \(9\) | |
| \(7\) |
Điều kiện của bất phương trình \(\dfrac{|2-x|}{\sqrt{x-5}}\ge \dfrac{3x+7}{\sqrt{x-5}}\) là
| \(x>5\) | |
| \(x\geq5\) | |
| \(x\leq2\) | |
| \(D=(5;+\infty)\) |
Mệnh đề nào sau đây là sai?
| Đồ thị hàm số \(y=\left|\sin x\right|\) đối xứng qua gốc tọa độ \(O\) | |
| Đồ thị hàm số \(y=\cos x\) đối xứng qua trục \(Oy\) | |
| Đồ thị hàm số \(y=\left|\tan x\right|\) đối xứng qua trục \(Oy\) | |
| Đồ thị hàm số \(y=\tan x\) đối xứng qua gốc tọa độ \(O\) |
Với \(a,\,b\) là hai số thực khác \(0\) tùy ý. Khi đó \(\ln\left(a^2b^4\right)\) bằng
| \(2\ln a+4\ln b\) | |
| \(4\ln a+2\ln b\) | |
| \(2\ln|a|+4\ln|b|\) | |
| \(4\left(\ln|a|+\ln|b|\right)\) |
Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.
| $32$ | |
| $29$ | |
| $25$ | |
| $46$ |
Cho hai số thực $x,\,y$ bất kì. Khẳng định nào dưới đây đúng?
| $5^x< 5^y\Leftrightarrow x>y$ | |
| $5^x>5^y\Leftrightarrow x>y$ | |
| $5^x>5^y\Leftrightarrow x< y$ | |
| $5^x>5^y\Leftrightarrow x=y$ |
Tập nghiệm của bất phương trình $3^x>5$ là
| $\big(0;\log_35\big)$ | |
| $\big(\log_53;+\infty\big)$ | |
| $\big(\log_35;+\infty\big)$ | |
| $\big(0;\log_53\big)$ |
Xét các số thực $x,\,y$ thỏa mãn $x^2+y^2>1$ và $\log_{x^2+y^2}(2x+4y)\geq1$. Giá trị lớn nhất của biểu thức $P=3x+y$ bằng
| $5+2\sqrt{10}$ | |
| $5+4\sqrt{5}$ | |
| $5+5\sqrt{2}$ | |
| $10+2\sqrt{5}$ |
Có bao nhiêu số nguyên $y\in(-2022;2022]$ để bất phương trình $2+\log_{\sqrt{3}}(y-1)\leq\log_{\sqrt{3}}\big[x^2-2(3+y)x+2y^2+24\big]$ nghiệm đúng với mọi $x\in\mathbb{R}$?
| $2011$ | |
| $2021$ | |
| $2019$ | |
| $4041$ |
Số nghiệm nguyên của bất phương trình $\log_4(2x+3)< 2$ là
| $7$ | |
| $8$ | |
| $9$ | |
| $10$ |
Tập nghiệm của bất phương trình $3^x\leq81$ là
| $(-\infty;4]$ | |
| $[4;+\infty)$ | |
| $(4;+\infty)$ | |
| $(-\infty;4)$ |
Tập nghiệm của bất phương trình $\log_5x\geq2$ là
| $[10;+\infty)$ | |
| $[0;+\infty)$ | |
| $[32;+\infty)$ | |
| $[25;+\infty)$ |
Có bao nhiêu số nguyên $x$ thoả mãn $\big(7^x-49\big)\big(\log_3^2x-7\log_3x+6\big)< 0$?
| $728$ | |
| $726$ | |
| $725$ | |
| $729$ |