Một xe lửa chuyển động chậm dần đều và dừng lại hẳn sau $20\mathrm{s}$ kể từ lúc bắt đầu hãm phanh. Trong thời gian đó xe chạy được $120\mathrm{m}$. Cho biết công thức tính vận tốc của chuyển động biến đổi đều là $v=v_0+at$; trong đó $a\,\left(\mathrm{m}/\mathrm{s}^2\right)$ là gia tốc, $v\,(\mathrm{m}/\mathrm{s})$ là vận tốc tại thời điểm $t~(s)$. Hãy tính vận tốc $v_{0}$ của xe lửa lúc bắt đầu hãm phanh.
| $30\mathrm{~m}/\mathrm{s}$ | |
| $45\mathrm{~m}/\mathrm{s}$ | |
| $6\mathrm{~m}/\mathrm{s}$ | |
| $12\mathrm{~m}/\mathrm{s}$ |
Một ô tô đang chạy với vận tốc $15$ (m/s) thì tăng tốc chuyển động nhanh dần với gia tốc $a=3t-8$ (m/s$^2$), trong đó $t$ là khoảng thời gian tính bằng giây kể từ lúc tăng vận tốc. Hỏi sau $10$ giây tăng tốc, ô tô đi được bao nhiêu mét?
| $150$ | |
| $180$ | |
| $246$ | |
| $250$ |
Một vật chuyển động chậm dần đều với vận tốc $v(t)=150-10t$ (m/s), trong đó $t$ là thời gian tính bằng giây kể từ lúc vật bắt đầu chuyển động chậm dần đều. Trong $4$ giây trước khi dừng hẳn, vật di chuyển được một quãng đường bằng
| $520$m | |
| $150$m | |
| $80$m | |
| $100$m |
Giả sử một vật từ trạng thái nghỉ khi $t=0$ (s) chuyển động thẳng với vận tốc $v(t)=t(5-t)$ (m/s). Tìm quãng đường vật đi được khi nó dừng lại.
| $\dfrac{15}{4}$ m | |
| $5$ m | |
| $25$ m | |
| $\dfrac{125}{6}$ m |
Để đảm bảo an toàn khi lưu thông trên đường, các xe ô tô khi dừng đèn đỏ phải cách nhau tối thiểu \(1\) m. Một ô tô \(A\) đang chạy với vận tốc \(12\) m/s bỗng gặp ô tô \(B\) đang dừng đèn đỏ nên ô tô \(A\) hãm phanh và chuyển động chậm dần đều với vận tốc được biểu thị bởi công thức \(v_A(t)=12-4t\) (đơn vị tính bằng m/s), thời gian \(t\) tính bằng giây. Hỏi rằng để hai ô tô \(A\) và \(B\) đạt khoảng cách an toàn khi dừng lại thì ô tô \(A\) phải hãm phanh khi cách ô tô \(B\) một khoảng ít nhất là bao nhiêu mét?
| \(37\) | |
| \(17\) | |
| \(19\) | |
| \(18\) |
Một chiếc xe đang chạy đều với vận tốc \(20\) m/s thì giảm phanh với vận tốc \(v(t)=20-2t\) m/s đến khi dừng hẳn. Quãng đường xe đi được từ lúc bắt đầu giảm phanh đến khi dừng hẳn là
| \(98\) m | |
| \(94\) m | |
| \(100\) m | |
| \(96\) m |
Một ô tô đang chạy với tốc độ \(36\) km/h thì người lái xe đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v(t)=-5t+10\) m/s, trong đó \(t\) là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến lúc dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
| \(10\) m | |
| \(20\) m | |
| \(2\) m | |
| \(0,2\) m |
Một ô tô đang chạy với vận tốc \(54\) km/h thì tăng tốc chuyển động nhanh dần đều với gia tốc \(a(t)=3t-8\) (m/s\(^2\)) trong đó \(t\) là khoảng thời gian tính bằng giây. Quãng đường mà ô tô đi được sau \(10\) s kể từ lúc tăng tốc là
| \(540\) m | |
| \(150\) m | |
| \(250\) m | |
| \(246\) m |
Một ô tô đang đi với vận tốc lớn hơn \(72\)km/h, phía trước là đoạn đường chỉ cho phép chạy với tốc độ tối đa là \(72\)km/h, vì thế người lái xe đạp phanh để ô tô chuyển động chậm dần đều với vận tốc \(v(t)=30-2t\) (m/s), trong đó \(t\) là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc bắt đầu đạp phanh đến lúc đạt tốc độ \(72\)km/h, ô tô đã di chuyển quãng đường là bao nhiêu mét?
| \(100\)m | |
| \(150\)m | |
| \(175\)m | |
| \(125\)m |
Một chất điểm chuyển động có phương trình $s=t^3-2t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=4$ (giây)?
| $64$m/s | |
| $46$m/s | |
| $56$m/s | |
| $22$m/s |
Một chất điểm chuyển động có phương trình $s=t^3+3t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=2$ (giây).
| $12$m/s | |
| $15$m/s | |
| $14$m/s | |
| $7$m/s |
Một vật dao động điều hòa có phương trình quảng đường phụ thuộc thời gian $s=A\sin\left(\omega t+\varphi\right)$. Trong đó $A$, $\omega$, $\varphi$ là hằng số, $t$ là thời gian. Khi đó biểu thức vận tốc của vật là
| $v=A\cos\left(\omega t+\varphi\right)$ | |
| $v=-A\omega\cos\left(\omega t+\varphi\right)$ | |
| $v=A\omega\cos\left(\omega t+\varphi\right)$ | |
| $v=-A\cos\left(\omega t+\varphi\right)$ |
Một chất điểm chuyển động theo quy luật $s\left(t\right)=t^2-\dfrac{1}{6}t^3$ (m). Tìm thời điểm $t$ (giây) mà tại đó vận tốc $v$(m/s) của chuyển động đạt giá trị lớn nhất.
| $t=2$ | |
| $t=0.5$ | |
| $t=2.5$ | |
| $t=1$ |
Cho chuyển động thẳng xác định bởi phương trình $S=-t^3+3t^2+9t$, trong đó $t$ tính bằng giây và $S$ tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.
| $12\,\text{m/s}$ | |
| $0\,\text{m/s}$ | |
| $11\,\text{m/s}$ | |
| $6\,\text{m/s}$ |
Một chất điểm chuyển động trong $20$ giây đầu tiên có phương trình $s\left(t\right)=\dfrac{1}{12}t^4-t^3+6t^2+10t$, trong đó $t>0$ với $t$ tính bằng giây $\left(s\right)$ và $s\left(t\right)$ tính bằng mét. Hỏi tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất thì vận tốc của vật bằng bao nhiêu?
| $17$(m/s) | |
| $18$(m/s) | |
| $28$(m/s) | |
| $13$(m/s) |
Một vật chuyển động theo quy luật $s\left(t\right)=-\dfrac{1}{2}t^3+12t^2$, $t$ (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động, $s$ (mét) là quãng đường vật chuyển động trong $t$ giây. Tính vận tốc tức thời của vật tại thời điểm $t=10$ (giây).
| $80$(m/s) | |
| $70$(m/s) | |
| $90$(m/s) | |
| $100$(m/s) |
Một chất điểm chuyển động theo quy luật $S=-\dfrac{1}{3}t^3+4t^2+\dfrac{2}{3}$ với $t$(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và $S$(mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian $8$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?
| $86$(m/s) | |
| $16$(m/s) | |
| $\dfrac{2}{3}$(m/s) | |
| $43$(m/s) |
Một chuyển động xác định bởi phương trình $S\left(t\right)=t^3-3t^2-9t+2$. Trong đó $t$ được tính bằng giây, $S$ được tính bằng mét. Khẳng định nào sau đây đúng?
| Vận tốc của chuyển động bằng $0$ khi $t=0$s hoặc $t=2$s | |
| Gia tốc của chuyển động tại thời điểm $t=3$s là $12\text{m/s}^2$ | |
| Gia tốc của chuyển động bằng $0\text{m/s}^2$ khi $t=0$s | |
| Vận tốc của chuyển động tại thời điểm $t=2$s là $v=18$m/s |
Một chất điểm chuyển động theo quy luật $S\left(t\right)=1+3t^2-t^3$. Vận tốc của chuyển động đạt giá trị lớn nhất khi $t$ bằng
| $t=2$ | |
| $t=1$ | |
| $t=3$ | |
| $t=4$ |
Một vật chuyển động theo quy luật $s=-\dfrac{1}{2}t^3+6t^2$ với $t$ (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và $s$ (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian $6$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?
| $24$(m/s) | |
| $108$(m/s) | |
| $64$(m/s) | |
| $18$(m/s) |