Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?
| $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
| $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
| $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
| $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
Cho hàm số $f(x)=\begin{cases} x^2-1 &\text{khi }x\geq2\\ x^2-2x+3 &\text{khi }x< 2 \end{cases}$. Tích phân $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f\left(2\sin x+1\right)\cos x\mathrm{\,d}x$ bằng
| $\dfrac{23}{3}$ | |
| $\dfrac{23}{6}$ | |
| $\dfrac{17}{6}$ | |
| $\dfrac{17}{3}$ |
Tích phân \(I=\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}x\sin2x\mathrm{\,d}x\) bằng
| \(\dfrac{\pi}{2}\) | |
| \(\dfrac{1}{4}\) | |
| \(1\) | |
| \(\dfrac{3}{4}\) |
Tính \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{3}}\sin{2x}\mathrm{\,d}x\).
| \(I=-\dfrac{1}{4}\) | |
| \(I=0,019\) | |
| \(I=-\dfrac{3}{4}\) | |
| \(I=\dfrac{3}{4}\) |
Tính tích phân \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{2}}\left(\sin{2x}+\sin x\right)\mathrm{\,d}x\).
| \(5\) | |
| \(3\) | |
| \(4\) | |
| \(2\) |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x)$ và $G(x)$ là hai nguyên hàm của $f(x)$ thỏa mãn $2F(3)+G(3)=9+2F(-1)+G(-1)$. Khi đó $\displaystyle\displaystyle\int\limits_0^2\big(x^2+f(3-2x)\big)\mathrm{\,d}x$ bằng
| $\dfrac{25}{6}$ | |
| $\dfrac{7}{6}$ | |
| $\dfrac{43}{6}$ | |
| $3$ |
Tính tích phân $\displaystyle\int\limits_{0}^{1}(2x+1)^5\mathrm{\,d}x$.
Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
| $5$ | |
| $4$ | |
| $6$ | |
| $7$ |
Tính thể tích $V$ của vật thể giới hạn bởi hai mặt phẳng $x=0,\,x=\pi$. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với $Ox$ tại điểm có hoành độ $x\,(0\leq x\leq\pi)$ là một tam giác vuông cân có cạnh huyền bằng $\sin x+2$.
| $\dfrac{7\pi}{6}+1$ | |
| $\dfrac{9\pi}{8}+1$ | |
| $\dfrac{7\pi}{6}+2$ | |
| $\dfrac{9\pi}{8}+2$ |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.
| $f(5)=2020-\dfrac{1}{2}\ln2$ | |
| $f(5)=2021-\ln2$ | |
| $f(5)=2021+\ln2$ | |
| $f(5)=2020+\ln2$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^2f(3x+1)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{7}f(x)\mathrm{d}x$.
| $I=20$ | |
| $I=8$ | |
| $I=18$ | |
| $I=16$ |
Cho $\displaystyle\displaystyle\int\limits_{4}^{9}f(x)\mathrm{d}x=10$. Tính tích phân $J=\displaystyle\displaystyle\int\limits_{0}^{1}f(5x+4)\mathrm{d}x$.
| $J=2$ | |
| $J=10$ | |
| $J=50$ | |
| $J=4$ |
Tính đạo hàm của hàm số $y=\sqrt{x+\cos x}$.
| $y'=\dfrac{1+\sin x}{2\sqrt{x+\cos x}}$ | |
| $y'=\dfrac{1-\sin x}{\sqrt{x+\cos x}}$ | |
| $y'=\dfrac{1-\sin x}{2\sqrt{x+\cos x}}$ | |
| $y'=\dfrac{1-\sin x}{2\sqrt{x+\sin x}}$ |
Tính đạo hàm của hàm số $y=\cot3x$.
| $y'=-\dfrac{3}{\sin^2x}$ | |
| $y'=\dfrac{3}{\sin^23x}$ | |
| $y'=-\dfrac{3}{\sin^33x}$ | |
| $y'=-\dfrac{3}{\sin^23x}$ |
Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng
| $-77$ | |
| $-17$ | |
| $103$ | |
| $43$ |
Tích phân $\displaystyle\displaystyle\int\limits_{0}^{10}x\mathrm{e}^{30x}\mathrm{\,d}x$ bằng
| $\dfrac{1}{900}\left(299\mathrm{e}^{300}+1\right)$ | |
| $300-900\mathrm{e}^{300}$ | |
| $-300+900\mathrm{e}^{300}$ | |
| $\dfrac{1}{900}\left(299\mathrm{e}^{300}-1\right)$ |
Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}\sin x\mathrm{\,d}x$.
| $I=1-\dfrac{\sqrt{2}}{2}$ | |
| $I=-1+\dfrac{\sqrt{2}}{2}$ | |
| $I=-\dfrac{\sqrt{2}}{2}$ | |
| $I=\dfrac{\sqrt{2}}{2}$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=3x^2-2x+3+4\displaystyle\int\limits_{0}^{1}xf\left(x^2\right)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{2}^{3}f(x)\mathrm{\,d}x$ bằng
| $17$ | |
| $11$ | |
| $14$ | |
| $21$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $f(x)=\sin x+2\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\cos x\cdot f(x)\mathrm{\,d}x$. Giá trị $f\left(-\dfrac{\pi}{2}\right)$ bằng
| $-\pi$ | |
| $-1$ | |
| $-2$ | |
| $0$ |
Cho hàm số $f(x)$ xác định và liên tục trên đoạn $[0;1]$ thỏa mãn $f(x)=x^3+\displaystyle\int\limits_{0}^{1}x^3f\left(x^2\right)\mathrm{\,d}x$, $\forall x\in[0;1]$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.
| $\dfrac{1}{4}$ | |
| $\dfrac{4}{15}$ | |
| $\dfrac{13}{20}$ | |
| $\dfrac{23}{60}$ |